limit as x approaching-1 of (x^2-2x+1)/(x^3+3x^2+3x+1)
|
\lim_{x\to\:-1}(\frac{x^{2}-2x+1}{x^{3}+3x^{2}+3x+1})
|
inverse laplace 1/(s^2-2s-3)
|
inverse\:laplace\:\frac{1}{s^{2}-2s-3}
|
limit as x approaching 0+of (e^{-x^2})/(x^3)
|
\lim_{x\to\:0+}(\frac{e^{-x^{2}}}{x^{3}})
|
y^{\prime \prime}-4y^{\prime}+3y=0,y(0)=1,y^{\prime}(0)= 1/3
|
y^{\prime\:\prime\:}-4y^{\prime\:}+3y=0,y(0)=1,y^{\prime\:}(0)=\frac{1}{3}
|
limit as x approaching 0+of (x-[x])/([x]-2x)
|
\lim_{x\to\:0+}(\frac{x-[x]}{[x]-2x})
|
derivative of x^2log_{2}(7-6x)
|
\frac{d}{dx}(x^{2}\log_{2}(7-6x))
|
integral of 6sin^2(3x)cos(3x)ln(sin(3x))
|
\int\:6\sin^{2}(3x)\cos(3x)\ln(\sin(3x))dx
|
integral from 0 to 4 of 4sqrt(x)-2x
|
\int_{\:0}^{4}4\sqrt{x}-2x
|
(dy)/(dx)=e^{3x}+9y
|
\frac{dy}{dx}=e^{3x}+9y
|
limit as x approaching-2 of (sin(-pi x))/(2+x)
|
\lim_{x\to\:-2}(\frac{\sin(-\pi\:x)}{2+x})
|
limit as x approaching-1 of (1+cos^2(x))/((x+1)^2)
|
\lim_{x\to\:-1}(\frac{1+\cos^{2}(x)}{(x+1)^{2}})
|
integral from 2 to 3 of (22)/(sqrt(3-x))
|
\int_{\:2}^{3}\frac{22}{\sqrt{3-x}}dx
|
tangent of f(x)=x^3-4x,\at x=0
|
tangent\:of\:f(x)=x^{3}-4x,\at\:x=0
|
inverse laplace 2/((s+2))
|
inverse\:laplace\:\frac{2}{(s+2)}
|
derivative of x^4+8x
|
\frac{d}{dx}(x^{4}+8x)
|
derivative of ln(((8x-9)^2)/(-x-1))
|
derivative\:of\:\ln(\frac{(8x-9)^{2}}{-x-1})
|
xe^{-3x}
|
xe^{-3x}
|
derivative of x^{11/2}
|
derivative\:of\:x^{\frac{11}{2}}
|
implicit derivative (dy)/(dx),x^5=e^{10}y^5+7y
|
implicit\:derivative\:\frac{dy}{dx},x^{5}=e^{10}y^{5}+7y
|
x^{\prime}=-x^2
|
x^{\prime\:}=-x^{2}
|
derivative of f(2)=3x^2-2x+5
|
derivative\:of\:f(2)=3x^{2}-2x+5
|
tangent of (6x)/(x^2+1)(-1,-3)
|
tangent\:of\:\frac{6x}{x^{2}+1}(-1,-3)
|
derivative of ln((sqrt(x+1))/(sqrt(x^2+4)))
|
derivative\:of\:\ln(\frac{\sqrt{x+1}}{\sqrt{x^{2}+4}})
|
limit as x approaching-infinity of (11x)/(x-1)-(9x)/(x+7)
|
\lim_{x\to\:-\infty\:}(\frac{11x}{x-1}-\frac{9x}{x+7})
|
integral of (x+2)/(x^3)
|
\int\:\frac{x+2}{x^{3}}dx
|
limit as x approaching infinity of (xm+1)/(x+1)
|
\lim_{x\to\:\infty\:}(\frac{xm+1}{x+1})
|
(\partial)/(\partial x)(2xe^{x^2})
|
\frac{\partial\:}{\partial\:x}(2xe^{x^{2}})
|
integral of (sec^2(πx)-sqrt(x))
|
\int\:(\sec^{2}(πx)-\sqrt{x})dx
|
limit as x approaching-2 of ((|x|-2))/((sqrt(x^2-3))-1)
|
\lim_{x\to\:-2}(\frac{(|x|-2)}{(\sqrt{x^{2}-3})-1})
|
partial derivative of (yx/(zw))^{1/2}
|
\frac{\partial}{\partial\:x}(\frac{yx}{zw})^{\frac{1}{2}}
|
derivative of (4-xe^x/(x+e^x))
|
\frac{d}{dx}(\frac{4-xe^{x}}{x+e^{x}})
|
sum from n=1 to infinity of (cos(npi))/(n^2)
|
\sum_{n=1}^{\infty\:}\frac{\cos(n\pi)}{n^{2}}
|
limit as x approaching 2 of (sqrt(x+47-7))/(5x-10)
|
\lim_{x\to\:2}(\frac{\sqrt{x+47-7}}{5x-10})
|
tangent of (f(x)-f(a))/(x-a)
|
tangent\:of\:\frac{f(x)-f(a)}{x-a}
|
partial derivative of y^5sin(6x)
|
\frac{\partial}{\partial\:x}(y^{5}\sin(6x))
|
integral from 0 to 1 of integral from 0 to s^5 of cos(s^6)
|
\int_{\:0}^{1}\int_{0}^{s^{5}}\cos(s^{6})dtds
|
derivative of f(x)=-4/x
|
derivative\:of\:f(x)=-\frac{4}{x}
|
y^{\prime}=-ty
|
y^{\prime\:}=-ty
|
y^{\prime}=((x+2y))/x
|
y^{\prime\:}=\frac{(x+2y)}{x}
|
derivative of (1+e^{-x}^{-1})
|
\frac{d}{dx}((1+e^{-x})^{-1})
|
limit as x approaching infinity of (x^2-9)/(x(x-3))
|
\lim_{x\to\:\infty\:}(\frac{x^{2}-9}{x(x-3)})
|
derivative of y=y(1-y)
|
\frac{d}{dx}(y)=y(1-y)
|
xy^{\prime}-2y=x^2,x> 0
|
xy^{\prime\:}-2y=x^{2},x\gt\:0
|
limit as t approaching a(t) of (2sqrt(a(t)^2-t))/(sqrt(a(t)-t))
|
\lim_{t\to\:a(t)}(\frac{2\sqrt{a(t)^{2}-t}}{\sqrt{a(t)-t}})
|
limit as x approaching 4 of 5x^2-2x+3
|
\lim_{x\to\:4}(5x^{2}-2x+3)
|
implicit derivative (d^2y)/(dx^2),y=-4x^9-1
|
implicit\:derivative\:\frac{d^{2}y}{dx^{2}},y=-4x^{9}-1
|
limit as x approaching 7 of ((x^2-2x-35))/(x-7)
|
\lim_{x\to\:7}(\frac{(x^{2}-2x-35)}{x-7})
|
limit as x approaching infinity of 1/(sqrt(x^2+1-x))
|
\lim_{x\to\:\infty\:}(\frac{1}{\sqrt{x^{2}+1-x}})
|
limit as x approaching 0 of (1^x-9^x)/x
|
\lim_{x\to\:0}(\frac{1^{x}-9^{x}}{x})
|
derivative of y=sin(3x)
|
derivative\:of\:y=\sin(3x)
|
(\partial)/(\partial x)(x^2+2y^2-x^2y)
|
\frac{\partial\:}{\partial\:x}(x^{2}+2y^{2}-x^{2}y)
|
limit as x approaching+(-infinity)+of sqrt(2+x)
|
\lim_{x\to\:+(-\infty\:)+}(\sqrt{2+x})
|
integral of (10)/(sqrt(1-x^2))
|
\int\:\frac{10}{\sqrt{1-x^{2}}}dx
|
(\partial)/(\partial x)((x^2+2x-1/2 y)^{11})
|
\frac{\partial\:}{\partial\:x}((x^{2}+2x-\frac{1}{2}y)^{11})
|
xy^{\prime \prime}-2y^{\prime}=0
|
xy^{\prime\:\prime\:}-2y^{\prime\:}=0
|
integral of 6/((9t^2+1)^2)
|
\int\:\frac{6}{(9t^{2}+1)^{2}}dt
|
derivative of Ax^2e^x
|
\frac{d}{dx}(Ax^{2}e^{x})
|
integral from 0 to 3 of 450.268e^{1.12567t}
|
\int_{\:0}^{3}450.268e^{1.12567t}dt
|
sum from n=0 to infinity of (3^n)/(10^{2n+1)}
|
\sum_{n=0}^{\infty\:}\frac{3^{n}}{10^{2n+1}}
|
limit as x approaching infinity of e^x-x
|
\lim_{x\to\:\infty\:}(e^{x}-x)
|
integral of (x^2+1)/(x^4+1)
|
\int\:\frac{x^{2}+1}{x^{4}+1}dx
|
derivative of 2e^xcos(x)
|
derivative\:of\:2e^{x}\cos(x)
|
integral from 0 to 4 of pi((14sqrt(x))^2-(7x)^2)
|
\int_{\:0}^{4}\pi((14\sqrt{x})^{2}-(7x)^{2})dx
|
limit as x approaching infinity of ((3x-30)^2-2x)/(25x+3x^2-9)
|
\lim_{x\to\:\infty\:}(\frac{(3x-30)^{2}-2x}{25x+3x^{2}-9})
|
partial derivative of ln(x^3)
|
\frac{\partial}{\partial\:x}(\ln(x^{3}))
|
integral of 1/((1-y))
|
\int\:\frac{1}{(1-y)}dy
|
integral of (3/x)
|
\int\:(\frac{3}{x})dx
|
(\partial)/(\partial z)(5sin^2(z))
|
\frac{\partial\:}{\partial\:z}(5\sin^{2}(z))
|
sum from n=1 to infinity of 4+(-1)^n
|
\sum_{n=1}^{\infty\:}4+(-1)^{n}
|
integral of (-5csc^2(x))
|
\int\:(-5\csc^{2}(x))dx
|
tangent of x^3,\at x=1
|
tangent\:of\:x^{3},\at\:x=1
|
limit as x approaching 0 of (sqrt(9-x^2-3))/(7x)
|
\lim_{x\to\:0}(\frac{\sqrt{9-x^{2}-3}}{7x})
|
f(x)=x^3-4x+6
|
f(x)=x^{3}-4x+6
|
limit as x approaching 5 of (4-x)/(sqrt((x-1))-2)
|
\lim_{x\to\:5}(\frac{4-x}{\sqrt{(x-1)}-2})
|
integral of 5(tan(x))(ln(cos(x)))
|
\int\:5(\tan(x))(\ln(\cos(x)))dx
|
integral from 2 to infinity of 1/(3x+2)
|
\int_{\:2}^{\infty\:}\frac{1}{3x+2}dx
|
implicit derivative (d^2y)/(dx^2),x^2+2xy-y^2+x=2,\at (1,2)
|
implicit\:derivative\:\frac{d^{2}y}{dx^{2}},x^{2}+2xy-y^{2}+x=2,\at\:(1,2)
|
derivative of 5x+1
|
derivative\:of\:5x+1
|
integral of e^xsin(6e^x+3)
|
\int\:e^{x}\sin(6e^{x}+3)dx
|
limit as x approaching 1/(*3) of ((x+1))/(x+2)
|
\lim_{x\to\:\frac{1}{\cdot\:3}}(\frac{(x+1)}{x+2})
|
limit as x approaching infinity of log_{e}((x^2+x+1)/(x^2+2))
|
\lim_{x\to\:\infty\:}(\log_{e}(\frac{x^{2}+x+1}{x^{2}+2}))
|
derivative of y=(x6-10)x
|
derivative\:of\:y=(x6-10)x
|
slope sqrt(sin(cos^2(x))),\at x=pi
|
slope\:\sqrt{\sin(\cos^{2}(x))},\at\:x=\pi
|
limit as x approaching infinity of sqrt(5x)
|
\lim_{x\to\:\infty\:}(\sqrt{5x})
|
derivative of (6+x)/(1-6x)
|
derivative\:of\:\frac{6+x}{1-6x}
|
inverse laplace 6/(s^2)
|
inverse\:laplace\:\frac{6}{s^{2}}
|
d/(dt)(x)=3x^2+2x
|
\frac{d}{dt}(x)=3x^{2}+2x
|
limit as x approaching infinity of 2/(x+1)
|
\lim_{x\to\:\infty\:}(\frac{2}{x+1})
|
inverse laplace (2s^2-2s-6)/((s+1)(s-1)(s+2))
|
inverse\:laplace\:\frac{2s^{2}-2s-6}{(s+1)(s-1)(s+2)}
|
integral of 5/(\sqrt[3]{x)}
|
\int\:\frac{5}{\sqrt[3]{x}}dx
|
volume between y=x^2+1 and y=3-x on interval [-2,1] about y=0
|
volume\:between\:y=x^{2}+1\:and\:y=3-x\:on\:interval\:[-2,1]\:about\:y=0
|
derivative of (arcsin(x)/(sqrt(1-x^2)))
|
\frac{d}{dx}(\frac{\arcsin(x)}{\sqrt{1-x^{2}}})
|
(dy)/(dt)=0.0572(400-y),y(0)=32
|
\frac{dy}{dt}=0.0572(400-y),y(0)=32
|
limit as x approaching 8-of (sqrt(64-x^2))/(x-8)
|
\lim_{x\to\:8-}(\frac{\sqrt{64-x^{2}}}{x-8})
|
derivative of xsqrt(64-x^2)
|
\frac{d}{dx}(x\sqrt{64-x^{2}})
|
derivative of \sqrt[3]{(3x/(x+2)})
|
\frac{d}{dx}(\sqrt[3]{\frac{3x}{x+2}})
|
integral of (6x^2-18x+6)/((x-4)(x+1)(x-1))
|
\int\:\frac{6x^{2}-18x+6}{(x-4)(x+1)(x-1)}dx
|
limit as x approaching 1+of (2x-3x^2)/(1+x^3)
|
\lim_{x\to\:1+}(\frac{2x-3x^{2}}{1+x^{3}})
|
derivative of f(t)=(\sqrt[3]{t})/(t-3)
|
derivative\:of\:f(t)=\frac{\sqrt[3]{t}}{t-3}
|
integral from 0 to 5 of pi(25-x^2)
|
\int_{\:0}^{5}\pi(25-x^{2})dx
|