inverse 5sin(2x)
|
inverse\:5\sin(2x)
|
inverse (x+1)/(2x+1)
|
inverse\:\frac{x+1}{2x+1}
|
inverse f(x)=3x^3+6
|
inverse\:f(x)=3x^{3}+6
|
monotone intervals f(x)=-2x^4-2x^3+2x^2+7
|
monotone\:intervals\:f(x)=-2x^{4}-2x^{3}+2x^{2}+7
|
asymptotes f(x)= x/(x(x-4))
|
asymptotes\:f(x)=\frac{x}{x(x-4)}
|
asymptotes f(x)=(x^2+1)/(3x-2x^2)
|
asymptotes\:f(x)=\frac{x^{2}+1}{3x-2x^{2}}
|
domain f(x)=(sqrt(x+9))/(x-2)
|
domain\:f(x)=\frac{\sqrt{x+9}}{x-2}
|
slope intercept 13x-11y=12
|
slope\:intercept\:13x-11y=12
|
extreme points f(x)=x^2(x-3)
|
extreme\:points\:f(x)=x^{2}(x-3)
|
inverse (2x)/(3x-1)
|
inverse\:\frac{2x}{3x-1}
|
inverse f(x)=\sqrt[3]{x-1}+6
|
inverse\:f(x)=\sqrt[3]{x-1}+6
|
asymptotes y=sec(x+1)
|
asymptotes\:y=\sec(x+1)
|
inverse f(x)=sqrt(6x+12)
|
inverse\:f(x)=\sqrt{6x+12}
|
domain f(x)=x+5y=10
|
domain\:f(x)=x+5y=10
|
critical points log_{10}(x)
|
critical\:points\:\log_{10}(x)
|
intercepts f(x)=x^2+2x
|
intercepts\:f(x)=x^{2}+2x
|
asymptotes f(x)=(2x^2-22x+48)/(2x^2-25x+72)
|
asymptotes\:f(x)=\frac{2x^{2}-22x+48}{2x^{2}-25x+72}
|
inverse-sqrt(X-1)
|
inverse\:-\sqrt{X-1}
|
domain y=sin(x)
|
domain\:y=\sin(x)
|
parity x^{15}
|
parity\:x^{15}
|
inflection points x/(-x+1)
|
inflection\:points\:\frac{x}{-x+1}
|
intercepts f(x)= 7/(x^2-36)
|
intercepts\:f(x)=\frac{7}{x^{2}-36}
|
inverse-2/5 x^3
|
inverse\:-\frac{2}{5}x^{3}
|
domain f(x)=x-7
|
domain\:f(x)=x-7
|
asymptotes ((x^3+2))/((x+1)^2)
|
asymptotes\:\frac{(x^{3}+2)}{(x+1)^{2}}
|
domain f(x)=(x+8)/(x-5)
|
domain\:f(x)=\frac{x+8}{x-5}
|
extreme points f(x)=3xln(x)-8x,x> 0
|
extreme\:points\:f(x)=3xln(x)-8x,x\gt\:0
|
domain (2x)/(5x+8)
|
domain\:\frac{2x}{5x+8}
|
intercepts f(x)=-5x^2+25x^2-50x=-6x^4-2x^3
|
intercepts\:f(x)=-5x^{2}+25x^{2}-50x=-6x^{4}-2x^{3}
|
asymptotes-2x^2+2
|
asymptotes\:-2x^{2}+2
|
domain f(x)=3x^3+7x^2+9x+12
|
domain\:f(x)=3x^{3}+7x^{2}+9x+12
|
asymptotes f(x)=((5+x^4))/((x^2-x^4))
|
asymptotes\:f(x)=\frac{(5+x^{4})}{(x^{2}-x^{4})}
|
inverse (x+2)^2
|
inverse\:(x+2)^{2}
|
asymptotes f(x)=e^{x-3}+4
|
asymptotes\:f(x)=e^{x-3}+4
|
distance (5sqrt(2),7sqrt(3))(sqrt(2),-sqrt(3))
|
distance\:(5\sqrt{2},7\sqrt{3})(\sqrt{2},-\sqrt{3})
|
critical points P=-0.0001x^2+6.4x+7600
|
critical\:points\:P=-0.0001x^{2}+6.4x+7600
|
critical points y=(sqrt(1-x^2))/x
|
critical\:points\:y=\frac{\sqrt{1-x^{2}}}{x}
|
line [x/3]-[y/5]=1
|
line\:[x/3]-[y/5]=1
|
symmetry y=-2x^2-8x-6
|
symmetry\:y=-2x^{2}-8x-6
|
slope y=-1/3 x-2
|
slope\:y=-\frac{1}{3}x-2
|
inverse f(x)=4+5^x
|
inverse\:f(x)=4+5^{x}
|
slope 2x+6
|
slope\:2x+6
|
asymptotes f(x)=2x^2
|
asymptotes\:f(x)=2x^{2}
|
domain f(x)=sqrt((x-5)/(x-8)-4)
|
domain\:f(x)=\sqrt{\frac{x-5}{x-8}-4}
|
domain (6x)/(7x-1)
|
domain\:\frac{6x}{7x-1}
|
extreme points f(x)= 1/(4(150000-x))+16000*(5000)/x
|
extreme\:points\:f(x)=\frac{1}{4(150000-x)}+16000\cdot\:\frac{5000}{x}
|
inverse sqrt(x)-3
|
inverse\:\sqrt{x}-3
|
range e^{x+4}
|
range\:e^{x+4}
|
domain f(x)=(9x-2)/9
|
domain\:f(x)=\frac{9x-2}{9}
|
extreme points f(x)=3x+sqrt(10-x^2)
|
extreme\:points\:f(x)=3x+\sqrt{10-x^{2}}
|
inverse 5/(x-2)
|
inverse\:\frac{5}{x-2}
|
range \sqrt[3]{x+5}
|
range\:\sqrt[3]{x+5}
|
inverse f(x)=3x^2+9
|
inverse\:f(x)=3x^{2}+9
|
domain f(x)= 3/(2x+4)
|
domain\:f(x)=\frac{3}{2x+4}
|
asymptotes 4*(2/3)^x+1
|
asymptotes\:4\cdot\:(\frac{2}{3})^{x}+1
|
inverse f(x)= 1/4 x
|
inverse\:f(x)=\frac{1}{4}x
|
inverse f(x)=\sqrt[5]{x+2}+2
|
inverse\:f(x)=\sqrt[5]{x+2}+2
|
inflection points x-3x^{1/3}
|
inflection\:points\:x-3x^{\frac{1}{3}}
|
asymptotes f(x)=log_{3}(x)
|
asymptotes\:f(x)=\log_{3}(x)
|
domain f(x)=(2+x)/(1-x)
|
domain\:f(x)=\frac{2+x}{1-x}
|
parity f(x)= 2/(sqrt(x))
|
parity\:f(x)=\frac{2}{\sqrt{x}}
|
intercepts f(x)=(10)/(x^2+2)
|
intercepts\:f(x)=\frac{10}{x^{2}+2}
|
asymptotes f(x)=(x+2)/(-2x-1)
|
asymptotes\:f(x)=\frac{x+2}{-2x-1}
|
amplitude-1-sin(2x)
|
amplitude\:-1-\sin(2x)
|
domain y=sqrt(x+8)
|
domain\:y=\sqrt{x+8}
|
domain f(x)=(8x-7)^2
|
domain\:f(x)=(8x-7)^{2}
|
extreme points (-x^2+80x-700)
|
extreme\:points\:(-x^{2}+80x-700)
|
asymptotes f(x)=((x+1)(x-2))/((x+2)(x-3))
|
asymptotes\:f(x)=\frac{(x+1)(x-2)}{(x+2)(x-3)}
|
line (17,3)\land (20,3)
|
line\:(17,3)\land\:(20,3)
|
domain f(x)= 2/(x^2-7x)
|
domain\:f(x)=\frac{2}{x^{2}-7x}
|
domain f(x)=(7-x)/(x^2-9x)
|
domain\:f(x)=\frac{7-x}{x^{2}-9x}
|
parity y(x)=cos(sqrt(sin(cot(pi x))))
|
parity\:y(x)=\cos(\sqrt{\sin(\cot(\pi\:x))})
|
asymptotes f(x)=3x^4+4x^3+6x^2-4
|
asymptotes\:f(x)=3x^{4}+4x^{3}+6x^{2}-4
|
inverse f(x)=(5^x)/(8+5^x)
|
inverse\:f(x)=\frac{5^{x}}{8+5^{x}}
|
slope intercept y-10=-2(x-3)
|
slope\:intercept\:y-10=-2(x-3)
|
midpoint (3sqrt(2),7sqrt(5))(sqrt(2),-sqrt(5))
|
midpoint\:(3\sqrt{2},7\sqrt{5})(\sqrt{2},-\sqrt{5})
|
inverse-36000+0.2w
|
inverse\:-36000+0.2w
|
cot^2(x)
|
\cot^{2}(x)
|
domain (x+3)/(x^2-2x-8)
|
domain\:\frac{x+3}{x^{2}-2x-8}
|
midpoint (-5,3)(2,7)
|
midpoint\:(-5,3)(2,7)
|
line (-2,1),(3,-1)
|
line\:(-2,1),(3,-1)
|
asymptotes f(x)=2^x-3
|
asymptotes\:f(x)=2^{x}-3
|
domain f(x)=sqrt(x+5)-sqrt(x+1)
|
domain\:f(x)=\sqrt{x+5}-\sqrt{x+1}
|
symmetry-6(x-4)^2+6
|
symmetry\:-6(x-4)^{2}+6
|
inflection points f(x)=ln(6+x^2)
|
inflection\:points\:f(x)=\ln(6+x^{2})
|
parity f(x)=x^4-12x^2
|
parity\:f(x)=x^{4}-12x^{2}
|
domain f(x)=((2x^2+38x+293))/((x+17)(x+2))
|
domain\:f(x)=\frac{(2x^{2}+38x+293)}{(x+17)(x+2)}
|
inverse (3+4x)/(1-5x)
|
inverse\:\frac{3+4x}{1-5x}
|
symmetry y=x^2-6x+10
|
symmetry\:y=x^{2}-6x+10
|
parallel (-1,2)y=x+4
|
parallel\:(-1,2)y=x+4
|
domain f(x)=(5(x^2-1))/(x^2-4)
|
domain\:f(x)=\frac{5(x^{2}-1)}{x^{2}-4}
|
inverse f(x)=\sqrt[3]{5x+10}
|
inverse\:f(x)=\sqrt[3]{5x+10}
|
domain f(x)=((8x-5))/(8x)
|
domain\:f(x)=\frac{(8x-5)}{8x}
|
slope y= 3/4 x-8
|
slope\:y=\frac{3}{4}x-8
|
line (1/9)x-(1/7)y=1
|
line\:(\frac{1}{9})x-(\frac{1}{7})y=1
|
range (2x^3+3)/(x^3-1)
|
range\:\frac{2x^{3}+3}{x^{3}-1}
|
inverse f(x)=ln(8t)
|
inverse\:f(x)=\ln(8t)
|
domain f(x)=4x-10,x<= 2
|
domain\:f(x)=4x-10,x\le\:2
|
intercepts (x^3+3x^2+x+3)/(x+1)
|
intercepts\:\frac{x^{3}+3x^{2}+x+3}{x+1}
|
extreme points f(x)=x^{15/7}-x^{8/7}
|
extreme\:points\:f(x)=x^{\frac{15}{7}}-x^{\frac{8}{7}}
|