ืฉืืจืื ืืคืจื
ืืืฉื ืืืชืจ
This website uses cookies to ensure you get the best experience.
By using this website, you agree to our Cookie Policy.
Learn more
Accept
ืคืชืจืื ืืช
ืืจืคืื
ืชืจืืื
ืืืฉ
ืืืืืืจืื
ืืืฉืืื ืื
ืืืืจืช
ืงืืืฆืืช
ืฉืืืคืื
ืืชืืืจ
ืฉืืจื
ืฉืืจื
ืคืจืื ืืฉืืื
ืืคืฉืจืืืืช ืืชืืืจืืช
ื ืืืื ืืฉืืื
ืืืืจืืช
ืื ืื
ืืชื ืชืง
No new notifications
he
English
Español
Português
Français
ไธญๆ(็ฎไฝ)
Tiแบฟng Viแปt
ืขืืจืืช
ุงูุนุฑุจูุฉ
ืืขืืืช ืคืืคืืืจืืืช
ื ืืฉืืื
ืืจืื ืืืืืจื
ืืืืืจื
Word Problems
Functions & Graphing
ืืืืืืจืื
ืืจืืืื ืืืืจืื
ืืจืื ืืฉืืื ืืื ืคืืืืกืืื
ืืฉืืื ืืื ืคืืืกืืืื
ืกืืืืกืืืงื
ืืขืืืช Functions & Graphing ืคืืคืืืจืืืช
f(x)=(2x-1)/(3-x)+(sqrt(25-x^2-9))/(1-|x-3|)
f(x)=\frac{2x-1}{3-x}+\frac{\sqrt{25-x^{2}-9}}{1-\left|x-3\right|}
inverse f(x)=(3x-5)/(7x+2)
inverse\:f(x)=\frac{3x-5}{7x+2}
inflection points f(x)=x^4-8x^2+1
inflection\:points\:f(x)=x^{4}-8x^{2}+1
f(x)=(4x^2+4x)/((x+1)(x+2))
f(x)=\frac{4x^{2}+4x}{(x+1)(x+2)}
f(x)=(x^2+3)(x^{-1}+2)
f(x)=(x^{2}+3)(x^{-1}+2)
y=-3x^2+4x+10
y=-3x^{2}+4x+10
f(x)=12x^3-65x^2+74x-24
f(x)=12x^{3}-65x^{2}+74x-24
f(x)=sqrt((4-x^2))
f(x)=\sqrt{(4-x^{2})}
f(x)=(2x-6)/(x+3)
f(x)=\frac{2x-6}{x+3}
f(x)=(ln(2x))/x
f(x)=\frac{\ln(2x)}{x}
f(x)=\sqrt[3]{x}-sqrt(x)
f(x)=\sqrt[3]{x}-\sqrt{x}
P(x)=4x^5+8x^4-25x^3-20x^2+51x-18
P(x)=4x^{5}+8x^{4}-25x^{3}-20x^{2}+51x-18
f(w)=tan(w)sec(w)
f(w)=\tan(w)\sec(w)
inverse f(x)=-4x^2+3
inverse\:f(x)=-4x^{2}+3
f(x)=-5-4cos(x/2-(3pi)/8)
f(x)=-5-4\cos(\frac{x}{2}-\frac{3π}{8})
f(x)=(sqrt(x+5)-3)/(x^2-16)
f(x)=\frac{\sqrt{x+5}-3}{x^{2}-16}
g(x)= x/(x^2-16)
g(x)=\frac{x}{x^{2}-16}
f(x)=100-49x^2
f(x)=100-49x^{2}
f(x)=5x^2+2x-13
f(x)=5x^{2}+2x-13
f(x)=x^3-x^2-2x+4
f(x)=x^{3}-x^{2}-2x+4
f(x)=(1/2)^{x-1}+1
f(x)=(\frac{1}{2})^{x-1}+1
f(x)= 1/(x^3+2x^2-x-2)
f(x)=\frac{1}{x^{3}+2x^{2}-x-2}
36y^2=(x^2-4)^3,4<= x<= 6
36y^{2}=(x^{2}-4)^{3},4\le\:x\le\:6
f(x)=(x+2)^5(x-3)^4
f(x)=(x+2)^{5}(x-3)^{4}
inverse (2x-1)/3+1
inverse\:\frac{2x-1}{3}+1
y=4sin(pix)
y=4\sin(πx)
f(x)=cos(3x)dx
f(x)=\cos(3x)dx
f(x)=(4x-ln(3x))/x
f(x)=\frac{4x-\ln(3x)}{x}
f(x)=log_{10}(x-1)+1
f(x)=\log_{10}(x-1)+1
f(x)=sqrt((2-x)/x)
f(x)=\sqrt{\frac{2-x}{x}}
y=(x^2-1)^2
y=(x^{2}-1)^{2}
f(x)=e^x-3x
f(x)=e^{x}-3x
f(x)=(-11x+1)/(-30x^2-25x+5)
f(x)=\frac{-11x+1}{-30x^{2}-25x+5}
f(x)=x^3-4x^2+5x
f(x)=x^{3}-4x^{2}+5x
y=(x^2+1)/(x+1)+\sqrt[3]{x}
y=\frac{x^{2}+1}{x+1}+\sqrt[3]{x}
monotone intervals x^{1/x}
monotone\:intervals\:x^{\frac{1}{x}}
f(x)=5x^2+10x+3
f(x)=5x^{2}+10x+3
f(x)=x^3-6x^2-15x
f(x)=x^{3}-6x^{2}-15x
y=2(csc(x)+sec(x))
y=2(\csc(x)+\sec(x))
f(x)=-1/2 x-1/5
f(x)=-\frac{1}{2}x-\frac{1}{5}
f(x)=ln(x-1)+3
f(x)=\ln(x-1)+3
f(a)=cos(a)+1
f(a)=\cos(a)+1
f(x)=sqrt(\sqrt{x)-1}
f(x)=\sqrt{\sqrt{x}-1}
f(x)=(3x^2-2x+1)(3x+5)
f(x)=(3x^{2}-2x+1)(3x+5)
f(x)=((x^2+16))/((x^2-9))
f(x)=\frac{(x^{2}+16)}{(x^{2}-9)}
f(x)=(-2)/(x-2)-2
f(x)=\frac{-2}{x-2}-2
range f(x)=(1/2)^{2x}+5
range\:f(x)=(\frac{1}{2})^{2x}+5
f(x)=(sqrt(x-1))/(x^3-27)
f(x)=\frac{\sqrt{x-1}}{x^{3}-27}
f(x)=sqrt((1+cos(x))/2)
f(x)=\sqrt{\frac{1+\cos(x)}{2}}
y=-5x-24
y=-5x-24
f(x)=(\sqrt[3]{10-x}-2)/(x-2)
f(x)=\frac{\sqrt[3]{10-x}-2}{x-2}
y=-3/2 x^3
y=-\frac{3}{2}x^{3}
y=sin(x-pi)
y=\sin(x-π)
g(x)=sqrt(1+2x)
g(x)=\sqrt{1+2x}
F(x)=\sqrt[3]{x^2-5x+6}
F(x)=\sqrt[3]{x^{2}-5x+6}
f(x)=2sin(x)-x
f(x)=2\sin(x)-x
f(x)=4-sqrt(x+2)
f(x)=4-\sqrt{x+2}
slope y=-3x+8
slope\:y=-3x+8
f(x)=6x^2+12x-5
f(x)=6x^{2}+12x-5
f(x)=5arctan(x)-x
f(x)=5\arctan(x)-x
f(x)=(x-2)e^x+2
f(x)=(x-2)e^{x}+2
f(x)=4x^3+33x^2-36x-530
f(x)=4x^{3}+33x^{2}-36x-530
y= x/(x^2+16)
y=\frac{x}{x^{2}+16}
f(x)= 9/x-3
f(x)=\frac{9}{x}-3
g(x)=-2(x-4)(x+1)
g(x)=-2(x-4)(x+1)
f(x)=sin(2arctan(3x))
f(x)=\sin(2\arctan(3x))
f(x)=2+log_{10}(3)(x+2)
f(x)=2+\log_{10}(3)(x+2)
f(x)=(aln(x))/(sqrt(x))
f(x)=\frac{a\ln(x)}{\sqrt{x}}
inverse f(x)=\sqrt[3]{(x+3)/2}
inverse\:f(x)=\sqrt[3]{\frac{x+3}{2}}
f(x)=2sin(2/3 x)
f(x)=2\sin(\frac{2}{3}x)
g(x)=log_{10}(16x-x^2)
g(x)=\log_{10}(16x-x^{2})
f(x)=3x^2+9
f(x)=3x^{2}+9
f(x)= 1/(2x+6)
f(x)=\frac{1}{2x+6}
f(x)=sqrt((x+34)/4)
f(x)=\sqrt{\frac{x+34}{4}}
y=(x^3)/3-2x^2-5x
y=\frac{x^{3}}{3}-2x^{2}-5x
f(x)=x^4+x^2+x
f(x)=x^{4}+x^{2}+x
y=10.5x+450
y=10.5x+450
f(x)=2*x^{1/2}
f(x)=2\cdot\:x^{\frac{1}{2}}
f(x)=(sqrt(x+2))/(\sqrt[3]{4-x^2)}
f(x)=\frac{\sqrt{x+2}}{\sqrt[3]{4-x^{2}}}
domain f(x)=(x^2-4)/(x-3)
domain\:f(x)=\frac{x^{2}-4}{x-3}
f(x)=(4-3x-x^2)/(x^2-1)
f(x)=\frac{4-3x-x^{2}}{x^{2}-1}
f(x)=\sqrt[3]{x}(x-3)
f(x)=\sqrt[3]{x}(x-3)
y= 1/(2x)+2x
y=\frac{1}{2x}+2x
f(x)=(x^3+1)/(x^2+2)
f(x)=\frac{x^{3}+1}{x^{2}+2}
y=-3x^2+12x+1
y=-3x^{2}+12x+1
f(x)=(4x+3)/(2x-1)
f(x)=\frac{4x+3}{2x-1}
f(x)=sqrt(9x)+2
f(x)=\sqrt{9x}+2
cos(3θ),0<= θ<= 2pi
\cos(3θ),0\le\:θ\le\:2π
f(x)=\sqrt[3]{x}+sqrt(x)
f(x)=\sqrt[3]{x}+\sqrt{x}
f(n)=e^{1/n}
f(n)=e^{\frac{1}{n}}
extreme points f(x)=(x-4)^{2/3}
extreme\:points\:f(x)=(x-4)^{\frac{2}{3}}
f(x)=x^5+3x^3-10x
f(x)=x^{5}+3x^{3}-10x
f(x)=12x^7
f(x)=12x^{7}
f(x)=x^3+x^2-2x+1
f(x)=x^{3}+x^{2}-2x+1
f(x)=sin^2(ln(x))
f(x)=\sin^{2}(\ln(x))
f(x)=(x^2-x-42)/(x^2-36)
f(x)=\frac{x^{2}-x-42}{x^{2}-36}
f(x)=3x^2+5x+7
f(x)=3x^{2}+5x+7
f(x)=x^{x^3}
f(x)=x^{x^{3}}
h(t)=-4.9t^2+19.6t-14.6
h(t)=-4.9t^{2}+19.6t-14.6
f(x)=x^2-2|x|+1
f(x)=x^{2}-2\left|x\right|+1
1
..
11
12
13
14
15
16
17
..
1396
ืื ืื ื ืจืืฆืื ืืช ืืืฉืื ืฉืื
(ืืืคืฆืืื ืืื)
(ืืืคืฆืืื ืืื)
ืืืกืฃ ืืืืขื.
ืืืืขื ืืชืงืืื. ืชืืื ืขื ืืืฉืื.
ืืืืื
ืฉืื
Generating PDF...
Feedback