parity f(x)=4x^3
|
parity\:f(x)=4x^{3}
|
extreme points f(x)=x^4-3x^2+2
|
extreme\:points\:f(x)=x^{4}-3x^{2}+2
|
inverse f(x)=(4x)/(7x-1)
|
inverse\:f(x)=\frac{4x}{7x-1}
|
distance (-3,7)(-8,5)
|
distance\:(-3,7)(-8,5)
|
midpoint (9,10)(3,4)
|
midpoint\:(9,10)(3,4)
|
midpoint (-5,4)(0,6)
|
midpoint\:(-5,4)(0,6)
|
line 2,(,3)
|
line\:2,(,3)
|
slope intercept x-4y=-1
|
slope\:intercept\:x-4y=-1
|
inverse f(x)=((x-2)(x-1))/2+1
|
inverse\:f(x)=\frac{(x-2)(x-1)}{2}+1
|
line (-2,3)m=-1
|
line\:(-2,3)m=-1
|
periodicity f(x)=cos(n/4)
|
periodicity\:f(x)=\cos(\frac{n}{4})
|
slope intercept 20x+28-4y=0
|
slope\:intercept\:20x+28-4y=0
|
inverse f(x)=10x^3
|
inverse\:f(x)=10x^{3}
|
parity (x^5)/(dx)
|
parity\:\frac{x^{5}}{dx}
|
inverse f(x)=5-2^{x-1}
|
inverse\:f(x)=5-2^{x-1}
|
inverse f(x)=((x+14))/((x-12))
|
inverse\:f(x)=\frac{(x+14)}{(x-12)}
|
asymptotes f(x)=-1/2 x^2+4x+3
|
asymptotes\:f(x)=-\frac{1}{2}x^{2}+4x+3
|
slope f(x)=2x+3
|
slope\:f(x)=2x+3
|
intercepts f(x)= 5/(x^2+5x-6)
|
intercepts\:f(x)=\frac{5}{x^{2}+5x-6}
|
intercepts f(x)=5^{-x}
|
intercepts\:f(x)=5^{-x}
|
range (4x)/(x-2)
|
range\:\frac{4x}{x-2}
|
inverse f(x)=\sqrt[5]{x-8}+1
|
inverse\:f(x)=\sqrt[5]{x-8}+1
|
range f(x)=(sqrt(x+1))/(sqrt(x-4))
|
range\:f(x)=\frac{\sqrt{x+1}}{\sqrt{x-4}}
|
intercepts f(x)=2^x-3
|
intercepts\:f(x)=2^{x}-3
|
midpoint (-7,5)(7,3)
|
midpoint\:(-7,5)(7,3)
|
parallel y=x+3
|
parallel\:y=x+3
|
parallel y=-2/3+8
|
parallel\:y=-\frac{2}{3}+8
|
inverse f(x)=-5x
|
inverse\:f(x)=-5x
|
intercepts f(x)= 5/(x+1)
|
intercepts\:f(x)=\frac{5}{x+1}
|
inverse f(x)=5-3/4 x
|
inverse\:f(x)=5-\frac{3}{4}x
|
y=x^2-5
|
y=x^{2}-5
|
line (4,5)(12,6)
|
line\:(4,5)(12,6)
|
extreme points f(x)=sin^2(13x)
|
extreme\:points\:f(x)=\sin^{2}(13x)
|
intercepts f(x)=x^2-81
|
intercepts\:f(x)=x^{2}-81
|
domain f(x)=(7x)/(6+x)
|
domain\:f(x)=\frac{7x}{6+x}
|
domain 3-e^x
|
domain\:3-e^{x}
|
midpoint (5,4)(1,-2)
|
midpoint\:(5,4)(1,-2)
|
domain 1/(sqrt(2-3x))
|
domain\:\frac{1}{\sqrt{2-3x}}
|
line (3,5),(3,2)
|
line\:(3,5),(3,2)
|
slope intercept 3x+2y=-12
|
slope\:intercept\:3x+2y=-12
|
domain f(x)= x/(x^2-5x-6)
|
domain\:f(x)=\frac{x}{x^{2}-5x-6}
|
intercepts (x-6)/(x+6)
|
intercepts\:\frac{x-6}{x+6}
|
domain f(x)=2x(2x^2+8x)
|
domain\:f(x)=2x(2x^{2}+8x)
|
inverse f(x)=(3x)/(x-2)
|
inverse\:f(x)=\frac{3x}{x-2}
|
range f(x)=sqrt(x^2-1)
|
range\:f(x)=\sqrt{x^{2}-1}
|
domain x^3-6
|
domain\:x^{3}-6
|
parallel y=6x+1,\at (-7,1)
|
parallel\:y=6x+1,\at\:(-7,1)
|
domain 8x+4
|
domain\:8x+4
|
perpendicular y=3x-2,\at (-9,5)
|
perpendicular\:y=3x-2,\at\:(-9,5)
|
range f(x)=6^x+3
|
range\:f(x)=6^{x}+3
|
inverse f(x)=((n+n^2))/2
|
inverse\:f(x)=\frac{(n+n^{2})}{2}
|
inverse f(x)=10x-x^2
|
inverse\:f(x)=10x-x^{2}
|
inverse f(x)=(5x-1)/2
|
inverse\:f(x)=\frac{5x-1}{2}
|
slope y=3-4x
|
slope\:y=3-4x
|
domain f(x)=\sqrt[3]{(4x-8)}
|
domain\:f(x)=\sqrt[3]{(4x-8)}
|
domain f(x)=-3/(sqrt(t))
|
domain\:f(x)=-\frac{3}{\sqrt{t}}
|
intercepts f(-2)=-2x^2+4x+8
|
intercepts\:f(-2)=-2x^{2}+4x+8
|
intercepts f(x)=(2x-5)/(x+3)
|
intercepts\:f(x)=\frac{2x-5}{x+3}
|
critical points f(x)=x^2(4-x^2)
|
critical\:points\:f(x)=x^{2}(4-x^{2})
|
symmetry f(x)=2(x-2)^2-2
|
symmetry\:f(x)=2(x-2)^{2}-2
|
inflection points f(x)=-1/((x-3))
|
inflection\:points\:f(x)=-\frac{1}{(x-3)}
|
inverse f(x)=-3/4 x+5
|
inverse\:f(x)=-\frac{3}{4}x+5
|
parity x^{(12)/(x^4)}
|
parity\:x^{\frac{12}{x^{4}}}
|
slope intercept 2.9,m=-4.9
|
slope\:intercept\:2.9,m=-4.9
|
asymptotes f(x)=(x^2+3x-10)/(x^2+4x-32)
|
asymptotes\:f(x)=\frac{x^{2}+3x-10}{x^{2}+4x-32}
|
intercepts f(x)=4x-5y=20
|
intercepts\:f(x)=4x-5y=20
|
line (2,0),(-3,-5)
|
line\:(2,0),(-3,-5)
|
inverse arcsin(2ln(x)-1)
|
inverse\:\arcsin(2\ln(x)-1)
|
monotone intervals f(x)=5x-4(x-2)>= 0
|
monotone\:intervals\:f(x)=5x-4(x-2)\ge\:0
|
line (0,4)(1,5)
|
line\:(0,4)(1,5)
|
domain f(x)=2(2/3)^{x-3}-4
|
domain\:f(x)=2(\frac{2}{3})^{x-3}-4
|
critical points f(x)=((x-1))/((x^2+4))
|
critical\:points\:f(x)=\frac{(x-1)}{(x^{2}+4)}
|
slope y=4x-2
|
slope\:y=4x-2
|
midpoint (-2,3)(4,5)
|
midpoint\:(-2,3)(4,5)
|
asymptotes f(x)=3cot(1/2 x)-2
|
asymptotes\:f(x)=3\cot(\frac{1}{2}x)-2
|
symmetry f(x)=4x^2-3
|
symmetry\:f(x)=4x^{2}-3
|
inverse f(x)=2(x-3)^5
|
inverse\:f(x)=2(x-3)^{5}
|
asymptotes (x+3)/(x-3)
|
asymptotes\:\frac{x+3}{x-3}
|
domain f(x)=(x+9)/(x^2-4)
|
domain\:f(x)=\frac{x+9}{x^{2}-4}
|
symmetry y=-x^2+4x-3
|
symmetry\:y=-x^{2}+4x-3
|
parity ln|csc(x)-cot(x)|
|
parity\:\ln|\csc(x)-\cot(x)|
|
range-x^2+8x-12
|
range\:-x^{2}+8x-12
|
inflection points 19x^4-114x^2
|
inflection\:points\:19x^{4}-114x^{2}
|
critical points f(x)=((x^4+3))/((x^2+1)^2)
|
critical\:points\:f(x)=\frac{(x^{4}+3)}{(x^{2}+1)^{2}}
|
domain x^2-x-20
|
domain\:x^{2}-x-20
|
slope x+2y=8
|
slope\:x+2y=8
|
inverse f(x)=10(\sqrt[4]{x}-10)
|
inverse\:f(x)=10(\sqrt[4]{x}-10)
|
inverse f(x)=2-5x^2
|
inverse\:f(x)=2-5x^{2}
|
parity f(x)=sqrt(3)x
|
parity\:f(x)=\sqrt{3}x
|
inverse y=5+sqrt(5+x)
|
inverse\:y=5+\sqrt{5+x}
|
critical points f(x)=7x^3-3x^2+7
|
critical\:points\:f(x)=7x^{3}-3x^{2}+7
|
domain f(x)=(x-7)/((x-3)(x+2))
|
domain\:f(x)=\frac{x-7}{(x-3)(x+2)}
|
inflection points f(x)= 1/(x^2+4)
|
inflection\:points\:f(x)=\frac{1}{x^{2}+4}
|
domain f(x)=(x-5)/(x^2-25)
|
domain\:f(x)=\frac{x-5}{x^{2}-25}
|
inverse f(x)=(x^3)/2+1
|
inverse\:f(x)=\frac{x^{3}}{2}+1
|
symmetry-2x^2+8x-11
|
symmetry\:-2x^{2}+8x-11
|
intercepts f(x)=(2x-2)/(x+2)
|
intercepts\:f(x)=\frac{2x-2}{x+2}
|
parity f(x)=sqrt(x-5)
|
parity\:f(x)=\sqrt{x-5}
|
domain f(x)=\sqrt[3]{1/x}
|
domain\:f(x)=\sqrt[3]{\frac{1}{x}}
|
intercepts (2x+7)/(2x-9)
|
intercepts\:\frac{2x+7}{2x-9}
|