inverse (3x-2)/(x+5)
|
inverse\:\frac{3x-2}{x+5}
|
critical points x^2-1
|
critical\:points\:x^{2}-1
|
asymptotes f(x)=(x^2+10x+21)/(x^2-10x+16)
|
asymptotes\:f(x)=\frac{x^{2}+10x+21}{x^{2}-10x+16}
|
inverse f(x)=(x+1)^3+10
|
inverse\:f(x)=(x+1)^{3}+10
|
domain sqrt(x/2-1)
|
domain\:\sqrt{\frac{x}{2}-1}
|
domain (x^2)/(-2+x)
|
domain\:\frac{x^{2}}{-2+x}
|
inverse f(x)=-2x^3-1
|
inverse\:f(x)=-2x^{3}-1
|
line m=-2,\at (-8,-9)
|
line\:m=-2,\at\:(-8,-9)
|
perpendicular y=-12.987(x-2.565)
|
perpendicular\:y=-12.987(x-2.565)
|
intercepts f(x)=(x^2-2x-15)/(x+3)
|
intercepts\:f(x)=\frac{x^{2}-2x-15}{x+3}
|
inverse f(x)=((x-1))/x
|
inverse\:f(x)=\frac{(x-1)}{x}
|
slope intercept 20x-12y=-3
|
slope\:intercept\:20x-12y=-3
|
intercepts f(x)=(x^2+8x+12)/(x+2)
|
intercepts\:f(x)=\frac{x^{2}+8x+12}{x+2}
|
inverse f(x)=5s^2
|
inverse\:f(x)=5s^{2}
|
asymptotes (12)/(x^2+x-6)
|
asymptotes\:\frac{12}{x^{2}+x-6}
|
domain y= 1/(x^2)
|
domain\:y=\frac{1}{x^{2}}
|
intercepts f(x)=2x^2-6x+4
|
intercepts\:f(x)=2x^{2}-6x+4
|
inverse f(x)= t/3+2
|
inverse\:f(x)=\frac{t}{3}+2
|
range 3-4sin(2/3 (x-1))
|
range\:3-4\sin(\frac{2}{3}(x-1))
|
inverse y=x^3-2
|
inverse\:y=x^{3}-2
|
intercepts x-3sqrt(x)-28
|
intercepts\:x-3\sqrt{x}-28
|
parity y=sqrt(2x^2-5x^8)
|
parity\:y=\sqrt{2x^{2}-5x^{8}}
|
range (7x)/(5x-6)
|
range\:\frac{7x}{5x-6}
|
asymptotes f(x)=xsqrt((x-1)\div (x+1))
|
asymptotes\:f(x)=x\sqrt{(x-1)\div\:(x+1)}
|
domain f(x)=sqrt(2x+1)
|
domain\:f(x)=\sqrt{2x+1}
|
extreme points (x^3)/(x^2-4)
|
extreme\:points\:\frac{x^{3}}{x^{2}-4}
|
parity f(x)=x^4-2x^2
|
parity\:f(x)=x^{4}-2x^{2}
|
range y=ln(|x|)
|
range\:y=\ln(|x|)
|
inverse (3x-1)/(2x+5)
|
inverse\:\frac{3x-1}{2x+5}
|
inverse y=(x+4)^3
|
inverse\:y=(x+4)^{3}
|
intercepts f(x)=-3(2x+1)(x-4)(x+2)
|
intercepts\:f(x)=-3(2x+1)(x-4)(x+2)
|
domain f(x)=sqrt(50-5x)
|
domain\:f(x)=\sqrt{50-5x}
|
inverse f(x)= 1/2 x-1
|
inverse\:f(x)=\frac{1}{2}x-1
|
inverse f(x)=10^{x-2}
|
inverse\:f(x)=10^{x-2}
|
asymptotes y=(5+4x)/(x+3)
|
asymptotes\:y=\frac{5+4x}{x+3}
|
inverse f(x)=(x-9)^3+3
|
inverse\:f(x)=(x-9)^{3}+3
|
domain f(x)=sqrt(x+1)
|
domain\:f(x)=\sqrt{x+1}
|
domain g(x)=sqrt(2x-4)
|
domain\:g(x)=\sqrt{2x-4}
|
asymptotes f(x)=sqrt(((x-2))/(x-9))
|
asymptotes\:f(x)=\sqrt{\frac{(x-2)}{x-9}}
|
extreme points f(x)=x^3-3x+4
|
extreme\:points\:f(x)=x^{3}-3x+4
|
intercepts f(x)=(x+2)(x-4)
|
intercepts\:f(x)=(x+2)(x-4)
|
intercepts f(x)=2x^2-5x+7
|
intercepts\:f(x)=2x^{2}-5x+7
|
domain f(x)=sqrt(4x-5)
|
domain\:f(x)=\sqrt{4x-5}
|
shift-3sin(pi x+2)
|
shift\:-3\sin(\pi\:x+2)
|
domain f(x)=(x-2)/(x^3+x)
|
domain\:f(x)=\frac{x-2}{x^{3}+x}
|
inverse y=2x-9
|
inverse\:y=2x-9
|
inverse f(x)=9t+6
|
inverse\:f(x)=9t+6
|
inverse f(x)=(3x+6)/(x^2+9)
|
inverse\:f(x)=\frac{3x+6}{x^{2}+9}
|
range 9+sqrt(x)
|
range\:9+\sqrt{x}
|
domain f(x)=(x^2-1)/(x+1)
|
domain\:f(x)=\frac{x^{2}-1}{x+1}
|
slope intercept x+2y=-2
|
slope\:intercept\:x+2y=-2
|
asymptotes f(x)=((x^3-10x^2+16x))/(x^2-8x)
|
asymptotes\:f(x)=\frac{(x^{3}-10x^{2}+16x)}{x^{2}-8x}
|
critical points f(x)=xe^{-x^2}
|
critical\:points\:f(x)=xe^{-x^{2}}
|
line (12,0),(0,6)
|
line\:(12,0),(0,6)
|
domain f(x)=e^x+1
|
domain\:f(x)=e^{x}+1
|
domain f(x)=(sqrt(5x))/(7x-8)
|
domain\:f(x)=\frac{\sqrt{5x}}{7x-8}
|
inverse f(x)=sqrt(x)+3
|
inverse\:f(x)=\sqrt{x}+3
|
domain f(x)= 2/(3x+2)
|
domain\:f(x)=\frac{2}{3x+2}
|
domain f(x)=((x^2+7x))/((6x^2-1))
|
domain\:f(x)=\frac{(x^{2}+7x)}{(6x^{2}-1)}
|
inverse f(x)=2-1/2 x
|
inverse\:f(x)=2-\frac{1}{2}x
|
inverse f(x)=x^{(-1)/4}
|
inverse\:f(x)=x^{\frac{-1}{4}}
|
range f(x)=ln(5-x)
|
range\:f(x)=\ln(5-x)
|
inverse f(x)=((5+x))/(4-2x)
|
inverse\:f(x)=\frac{(5+x)}{4-2x}
|
domain 1/(x^2)+1/(x+1)+sqrt(1-x)
|
domain\:\frac{1}{x^{2}}+\frac{1}{x+1}+\sqrt{1-x}
|
line m= 6/7 ,\at (-6,-2)
|
line\:m=\frac{6}{7},\at\:(-6,-2)
|
domain f(x)=2x^2-1
|
domain\:f(x)=2x^{2}-1
|
asymptotes f(x)=(2x^2-3x-20)/(x-5)
|
asymptotes\:f(x)=\frac{2x^{2}-3x-20}{x-5}
|
midpoint (8,-2)(-10,-2)
|
midpoint\:(8,-2)(-10,-2)
|
extreme points f(x)=3x^3-x^2+1
|
extreme\:points\:f(x)=3x^{3}-x^{2}+1
|
range x^2-x
|
range\:x^{2}-x
|
inverse f(x)=-x-9
|
inverse\:f(x)=-x-9
|
distance (4,7),(1,6)
|
distance\:(4,7),(1,6)
|
inverse-5x+4
|
inverse\:-5x+4
|
asymptotes f(x)=arctan((x-1)/(x+1))
|
asymptotes\:f(x)=\arctan(\frac{x-1}{x+1})
|
extreme points f(x)=3-2x-x^2
|
extreme\:points\:f(x)=3-2x-x^{2}
|
slope y=3x+8
|
slope\:y=3x+8
|
range (x-2)/(x^3+x)
|
range\:\frac{x-2}{x^{3}+x}
|
distance (8594,8424),(4257,1278)
|
distance\:(8594,8424),(4257,1278)
|
extreme points f(x)= 5/(x^2-49)
|
extreme\:points\:f(x)=\frac{5}{x^{2}-49}
|
inverse f(x)=((x+19))/((x-17))
|
inverse\:f(x)=\frac{(x+19)}{(x-17)}
|
domain f(x)=-1/(2x^{3/2)}
|
domain\:f(x)=-\frac{1}{2x^{\frac{3}{2}}}
|
intercepts f(x)=(x-4)^2-5
|
intercepts\:f(x)=(x-4)^{2}-5
|
inverse y=(x-2)^2
|
inverse\:y=(x-2)^{2}
|
critical points f(x)=(-6666.67)/(x^{-1.3)}-90
|
critical\:points\:f(x)=\frac{-6666.67}{x^{-1.3}}-90
|
inflection points f(x)=2x(x+2)^2
|
inflection\:points\:f(x)=2x(x+2)^{2}
|
extreme points f(x)=x^3-4x^2+4x+1
|
extreme\:points\:f(x)=x^{3}-4x^{2}+4x+1
|
intercepts f(x)=-2
|
intercepts\:f(x)=-2
|
domain f(x)=(sqrt(x-6))/(x(x-7))
|
domain\:f(x)=\frac{\sqrt{x-6}}{x(x-7)}
|
inverse f(x)=(3-x)^2
|
inverse\:f(x)=(3-x)^{2}
|
asymptotes f(x)= 5/((x-3))
|
asymptotes\:f(x)=\frac{5}{(x-3)}
|
range f(x)=2sqrt(x+1)-3
|
range\:f(x)=2\sqrt{x+1}-3
|
asymptotes f(x)=((x^2+x+2))/(x-1)
|
asymptotes\:f(x)=\frac{(x^{2}+x+2)}{x-1}
|
symmetry (x-1)^2+2
|
symmetry\:(x-1)^{2}+2
|
domain f(x)=x+sqrt(x)+1
|
domain\:f(x)=x+\sqrt{x}+1
|
domain f(x)=(sqrt(x)+1)/(x^2-4)
|
domain\:f(x)=\frac{\sqrt{x}+1}{x^{2}-4}
|
range (x+1)/(10(x-2))
|
range\:\frac{x+1}{10(x-2)}
|
distance (-1,2)(3,2)
|
distance\:(-1,2)(3,2)
|
domain f(x)=(3x^2)/(x^2-4)
|
domain\:f(x)=\frac{3x^{2}}{x^{2}-4}
|
critical points (x^2)/(1-x)
|
critical\:points\:\frac{x^{2}}{1-x}
|
midpoint (-5,-2)(2,3)
|
midpoint\:(-5,-2)(2,3)
|