domain f(x)=(x+7)/2
|
domain\:f(x)=\frac{x+7}{2}
|
domain f(x)=log_{10}(14-x)
|
domain\:f(x)=\log_{10}(14-x)
|
domain+ln(x)+ln(7-x)
|
domain\:+\ln(x)+\ln(7-x)
|
domain (x-1)/(2x-3)
|
domain\:\frac{x-1}{2x-3}
|
domain 5/(x+2)-1/(x^2+x)
|
domain\:\frac{5}{x+2}-\frac{1}{x^{2}+x}
|
domain 2sqrt(x+2)
|
domain\:2\sqrt{x+2}
|
intercepts f(x)=-8x^2-2x
|
intercepts\:f(x)=-8x^{2}-2x
|
domain f(x)=(x/(x+1))/(1/(sqrt(x)))
|
domain\:f(x)=\frac{\frac{x}{x+1}}{\frac{1}{\sqrt{x}}}
|
domain f(x)=(2x^2+6x+4)/(-3x-5)
|
domain\:f(x)=\frac{2x^{2}+6x+4}{-3x-5}
|
domain f(x)=(sqrt(x-4))/(x^2+x-20)
|
domain\:f(x)=\frac{\sqrt{x-4}}{x^{2}+x-20}
|
domain 2sqrt(x-3)
|
domain\:2\sqrt{x-3}
|
domain-2x^2+2x-4
|
domain\:-2x^{2}+2x-4
|
domain 1/(sqrt(x-13))
|
domain\:\frac{1}{\sqrt{x-13}}
|
domain y-2=sqrt(x+5)
|
domain\:y-2=\sqrt{x+5}
|
domain (5x^2)/(x^2-16)
|
domain\:\frac{5x^{2}}{x^{2}-16}
|
domain f(x)=sqrt(4x^2-36)
|
domain\:f(x)=\sqrt{4x^{2}-36}
|
domain f(x)=((x+4))/(x^2+4)
|
domain\:f(x)=\frac{(x+4)}{x^{2}+4}
|
midpoint (8,10)(2,4)
|
midpoint\:(8,10)(2,4)
|
domain f(x)=(7x-3)/(5-4x)
|
domain\:f(x)=\frac{7x-3}{5-4x}
|
domain log_{10}(x)-1
|
domain\:\log_{10}(x)-1
|
domain (3x-4)/(-2x+11)
|
domain\:\frac{3x-4}{-2x+11}
|
domain f(x)=-sqrt(8x)+6
|
domain\:f(x)=-\sqrt{8x}+6
|
domain (x-5)/(x+8)
|
domain\:\frac{x-5}{x+8}
|
domain f(x)=sqrt(x+4)-1
|
domain\:f(x)=\sqrt{x+4}-1
|
domain f(x)=(sqrt(x+13)-2sqrt(1+x))/(x^2-9)
|
domain\:f(x)=\frac{\sqrt{x+13}-2\sqrt{1+x}}{x^{2}-9}
|
domain f(x)=(x+8)/(x-4)
|
domain\:f(x)=\frac{x+8}{x-4}
|
domain ln(sqrt(x))
|
domain\:\ln(\sqrt{x})
|
domain f(x)=(x-5)/(2x(3x-5))
|
domain\:f(x)=\frac{x-5}{2x(3x-5)}
|
range 7-sqrt(x)
|
range\:7-\sqrt{x}
|
domain 4/(x^2-3x-4)
|
domain\:\frac{4}{x^{2}-3x-4}
|
domain f(x)= 1/(2x^2+5x-3)
|
domain\:f(x)=\frac{1}{2x^{2}+5x-3}
|
domain y=4x-1
|
domain\:y=4x-1
|
domain f(x)=x^2-5x+7
|
domain\:f(x)=x^{2}-5x+7
|
domain-sqrt((1-3x)/(x-1))
|
domain\:-\sqrt{\frac{1-3x}{x-1}}
|
domain f(x)=((x^2+3)^3)/(sqrt((x^2-8)^4))
|
domain\:f(x)=\frac{(x^{2}+3)^{3}}{\sqrt{(x^{2}-8)^{4}}}
|
domain 2(x+3)^2-4
|
domain\:2(x+3)^{2}-4
|
domain f(x)=7x^4-5x^3-4
|
domain\:f(x)=7x^{4}-5x^{3}-4
|
domain f(x)=3+1/(x^2)
|
domain\:f(x)=3+\frac{1}{x^{2}}
|
domain f(x)=\sqrt[3]{x^2-9}
|
domain\:f(x)=\sqrt[3]{x^{2}-9}
|
asymptotes f(x)= 1/((x-3)^3)
|
asymptotes\:f(x)=\frac{1}{(x-3)^{3}}
|
domain f(x)= 3/4 sqrt(x+2-3)
|
domain\:f(x)=\frac{3}{4}\sqrt{x+2-3}
|
domain (sqrt(x^2-3))/(ln(x^2-3))
|
domain\:\frac{\sqrt{x^{2}-3}}{\ln(x^{2}-3)}
|
domain f(x)=-cos(x)
|
domain\:f(x)=-\cos(x)
|
domain 3*e^{-5x}
|
domain\:3\cdot\:e^{-5x}
|
domain f(x)=(x^2)/(sqrt(x+1))
|
domain\:f(x)=\frac{x^{2}}{\sqrt{x+1}}
|
domain 1/(1-e^x)
|
domain\:\frac{1}{1-e^{x}}
|
domain f(x)=log_{2}(x-3)+2
|
domain\:f(x)=\log_{2}(x-3)+2
|
domain f(x)=(x+1)/(1-x)
|
domain\:f(x)=\frac{x+1}{1-x}
|
domain (sqrt(1-x^2))/x
|
domain\:\frac{\sqrt{1-x^{2}}}{x}
|
domain (2+x^2)/(1-x^2)
|
domain\:\frac{2+x^{2}}{1-x^{2}}
|
intercepts f(x)=y=-3x+12
|
intercepts\:f(x)=y=-3x+12
|
perpendicular-3/2
|
perpendicular\:-\frac{3}{2}
|
domain f(x)=(x-5)/(x-2)
|
domain\:f(x)=\frac{x-5}{x-2}
|
domain f(x)=4^{x-1}
|
domain\:f(x)=4^{x-1}
|
domain f(x)=-(2(x^2-1))/(x^2-4)
|
domain\:f(x)=-\frac{2(x^{2}-1)}{x^{2}-4}
|
domain f(x)=x^2+4x-1,x>=-2-sqrt(5)
|
domain\:f(x)=x^{2}+4x-1,x\ge\:-2-\sqrt{5}
|
domain f(x)= x/(e^x)
|
domain\:f(x)=\frac{x}{e^{x}}
|
domain f(x)=2^x-6
|
domain\:f(x)=2^{x}-6
|
domain f(x)=((x^2-4))/(1-x^2)
|
domain\:f(x)=\frac{(x^{2}-4)}{1-x^{2}}
|
domain {sqrt(x+2):x<1, x/(x^2-6x+8):x>= 1}
|
domain\:\left\{\sqrt{x+2}:x<1,\frac{x}{x^{2}-6x+8}:x\ge\:1\right\}
|
domain f(x)=x^3-12x+1
|
domain\:f(x)=x^{3}-12x+1
|
domain 6x^2-18x+12
|
domain\:6x^{2}-18x+12
|
parity f(x)=\sqrt[3]{2x^2}
|
parity\:f(x)=\sqrt[3]{2x^{2}}
|
domain f(x)=(x-2)/4
|
domain\:f(x)=\frac{x-2}{4}
|
domain y=(x+2)/(sqrt(x^2-121))
|
domain\:y=\frac{x+2}{\sqrt{x^{2}-121}}
|
domain f(x)=((x^2-4))/(x^2-1)
|
domain\:f(x)=\frac{(x^{2}-4)}{x^{2}-1}
|
domain 1/(4x^2-4x-3)
|
domain\:\frac{1}{4x^{2}-4x-3}
|
domain f(x)=(sqrt(4-x))/5
|
domain\:f(x)=\frac{\sqrt{4-x}}{5}
|
domain f(x)=2^t
|
domain\:f(x)=2^{t}
|
domain f(x)=ln((sqrt(x))/(x-3))
|
domain\:f(x)=\ln(\frac{\sqrt{x}}{x-3})
|
domain x^2+1x-3
|
domain\:x^{2}+1x-3
|
domain 3/(a-6)
|
domain\:\frac{3}{a-6}
|
domain 4sin^2(x)
|
domain\:4\sin^{2}(x)
|
periodicity f(x)=tan(x/2)
|
periodicity\:f(x)=\tan(\frac{x}{2})
|
domain (4/5)^x
|
domain\:(\frac{4}{5})^{x}
|
domain sqrt(x)+9
|
domain\:\sqrt{x}+9
|
domain sqrt(x)+6
|
domain\:\sqrt{x}+6
|
domain y=ln(x-1)
|
domain\:y=\ln(x-1)
|
domain f(x)=((x^2-1))/((x^2+1))
|
domain\:f(x)=\frac{(x^{2}-1)}{(x^{2}+1)}
|
domain x^4+12x^2+42
|
domain\:x^{4}+12x^{2}+42
|
domain f(x)=sqrt((2x+1)/(x^2-1))
|
domain\:f(x)=\sqrt{\frac{2x+1}{x^{2}-1}}
|
domain y=ln(x+5)
|
domain\:y=\ln(x+5)
|
domain f(x)= 2/(x-8)+9
|
domain\:f(x)=\frac{2}{x-8}+9
|
domain f(x)= 1/(5x+1)
|
domain\:f(x)=\frac{1}{5x+1}
|
inverse f(x)=cos(2x)
|
inverse\:f(x)=\cos(2x)
|
domain f(x)=log_{10}(x^2-4x+4)
|
domain\:f(x)=\log_{10}(x^{2}-4x+4)
|
domain sqrt((x^2-1)/(x^3+x))
|
domain\:\sqrt{\frac{x^{2}-1}{x^{3}+x}}
|
domain f(x)=ln(x^2-5)
|
domain\:f(x)=\ln(x^{2}-5)
|
domain f(x)=e^{-x}+4
|
domain\:f(x)=e^{-x}+4
|
domain f(x)=(3e^x)/(e^x-2)
|
domain\:f(x)=\frac{3e^{x}}{e^{x}-2}
|
domain f(x)= x/(\sqrt[3]{x^2-1)}
|
domain\:f(x)=\frac{x}{\sqrt[3]{x^{2}-1}}
|
domain f(x)=5^{2x^2+6}<= 1/25
|
domain\:f(x)=5^{2x^{2}+6}\le\:\frac{1}{25}
|
domain f(x)=2sin(2x)
|
domain\:f(x)=2\sin(2x)
|
domain f(x)=x^2-20x+104
|
domain\:f(x)=x^{2}-20x+104
|
domain 2x^2-13x-7
|
domain\:2x^{2}-13x-7
|
midpoint (2,4)(6,10)
|
midpoint\:(2,4)(6,10)
|
domain f(x)=(2x+2)/(sqrt(x^2+3x-40))
|
domain\:f(x)=\frac{2x+2}{\sqrt{x^{2}+3x-40}}
|
domain y=|x+3|
|
domain\:y=\left|x+3\right|
|
domain f(x)=-3^{x-2}+4
|
domain\:f(x)=-3^{x-2}+4
|
domain f(x)=e^{x+1}+2
|
domain\:f(x)=e^{x+1}+2
|