extreme points f(x)=6x^4+32x^3
|
extreme\:points\:f(x)=6x^{4}+32x^{3}
|
inverse h(x)= 1/(x+3)
|
inverse\:h(x)=\frac{1}{x+3}
|
domain g(x)=sqrt(3x-6)
|
domain\:g(x)=\sqrt{3x-6}
|
range-3^{x-3}+3
|
range\:-3^{x-3}+3
|
inverse f(x)=\sqrt[3]{7-x}+5
|
inverse\:f(x)=\sqrt[3]{7-x}+5
|
inverse y=3^{2x-1}
|
inverse\:y=3^{2x-1}
|
domain f(x)= x/(x^2+5x+4)
|
domain\:f(x)=\frac{x}{x^{2}+5x+4}
|
domain f(x,y)=sqrt(81-x^2)
|
domain\:f(x,y)=\sqrt{81-x^{2}}
|
domain 4/(x+2)
|
domain\:\frac{4}{x+2}
|
critical points ln(x+1)
|
critical\:points\:\ln(x+1)
|
range f(x)= 1/(sqrt(x^2+2x+3))
|
range\:f(x)=\frac{1}{\sqrt{x^{2}+2x+3}}
|
line (0,0)(2.03,7.01)
|
line\:(0,0)(2.03,7.01)
|
inverse f(x)=\sqrt[3]{x/8}-4
|
inverse\:f(x)=\sqrt[3]{\frac{x}{8}}-4
|
monotone intervals f(x)=(x-3)sqrt(x)
|
monotone\:intervals\:f(x)=(x-3)\sqrt{x}
|
domain x^2+1
|
domain\:x^{2}+1
|
inverse-3+ln(x)
|
inverse\:-3+\ln(x)
|
extreme points (x^2)/(16)+(x^2-200x+10000)/(4pi)
|
extreme\:points\:\frac{x^{2}}{16}+\frac{x^{2}-200x+10000}{4\pi}
|
extreme points f(x)=(3x-3)^2,-infinity < x<= 2
|
extreme\:points\:f(x)=(3x-3)^{2},-\infty\:\lt\:x\le\:2
|
domain f(x)=\sqrt[3]{x^4+9}
|
domain\:f(x)=\sqrt[3]{x^{4}+9}
|
inverse f(x)=1-e^{-0.01x}
|
inverse\:f(x)=1-e^{-0.01x}
|
domain cot(1/8 x)
|
domain\:\cot(\frac{1}{8}x)
|
asymptotes f(x)=(5x^2+25x+30)/(-3x^2-9x)
|
asymptotes\:f(x)=\frac{5x^{2}+25x+30}{-3x^{2}-9x}
|
monotone intervals f(x)=x^4-12x^3
|
monotone\:intervals\:f(x)=x^{4}-12x^{3}
|
distance (3,-1)(x,8)
|
distance\:(3,-1)(x,8)
|
distance (1,3)(-8,-6)
|
distance\:(1,3)(-8,-6)
|
range (x^2-4)/(x^2)
|
range\:\frac{x^{2}-4}{x^{2}}
|
domain ((5x+4)(4x-2))/((x^2-36)^2)
|
domain\:\frac{(5x+4)(4x-2)}{(x^{2}-36)^{2}}
|
slope intercept 2x+2/3 y=10
|
slope\:intercept\:2x+\frac{2}{3}y=10
|
domain-3/(2t^{3/2)}
|
domain\:-\frac{3}{2t^{\frac{3}{2}}}
|
domain f(x)=sqrt(x-4)+3
|
domain\:f(x)=\sqrt{x-4}+3
|
range f(x)= 1/(x^2-2)
|
range\:f(x)=\frac{1}{x^{2}-2}
|
slope y=1-x
|
slope\:y=1-x
|
domain f(x)=-(x+2)^3+1
|
domain\:f(x)=-(x+2)^{3}+1
|
intercepts f(x)=x^2+6x+2
|
intercepts\:f(x)=x^{2}+6x+2
|
domain f(x)= 1/(3x^2-2x-1)
|
domain\:f(x)=\frac{1}{3x^{2}-2x-1}
|
domain f(x)=sqrt(3x^2-2x)-(x^2-1)/(2x+1)+sin(x-3)
|
domain\:f(x)=\sqrt{3x^{2}-2x}-\frac{x^{2}-1}{2x+1}+\sin(x-3)
|
asymptotes f(x)=log_{9}(-x)
|
asymptotes\:f(x)=\log_{9}(-x)
|
range f(x)=3(2)^x
|
range\:f(x)=3(2)^{x}
|
critical points f(x)=-2x+3
|
critical\:points\:f(x)=-2x+3
|
asymptotes f(x)=((x^2+2x-3))/((x^2-1))
|
asymptotes\:f(x)=\frac{(x^{2}+2x-3)}{(x^{2}-1)}
|
critical points f(x)=x^4-32x^2
|
critical\:points\:f(x)=x^{4}-32x^{2}
|
parallel 4/3 x-5/3 =y
|
parallel\:\frac{4}{3}x-\frac{5}{3}=y
|
extreme points f(x)=x^3-4x^2+5
|
extreme\:points\:f(x)=x^{3}-4x^{2}+5
|
critical points f(x)=((x+6))/((x^2+x+1))
|
critical\:points\:f(x)=\frac{(x+6)}{(x^{2}+x+1)}
|
asymptotes f(x)=(3x^2-6x)/(x^2-25)
|
asymptotes\:f(x)=\frac{3x^{2}-6x}{x^{2}-25}
|
range f(x)=x^4+3
|
range\:f(x)=x^{4}+3
|
perpendicular 3=3(2)-12
|
perpendicular\:3=3(2)-12
|
domain f(x)=-(x-2)^2+5
|
domain\:f(x)=-(x-2)^{2}+5
|
intercepts f(x)=5^x
|
intercepts\:f(x)=5^{x}
|
extreme points f(x)=x^3-3x^2+3x+3
|
extreme\:points\:f(x)=x^{3}-3x^{2}+3x+3
|
critical points f(x)=x^3-3x^2+3x-7
|
critical\:points\:f(x)=x^{3}-3x^{2}+3x-7
|
asymptotes f(x)=(x+3)/(x-1)
|
asymptotes\:f(x)=\frac{x+3}{x-1}
|
amplitude f(x)=4sin(2x-(pi)/6)+2
|
amplitude\:f(x)=4\sin(2x-\frac{\pi}{6})+2
|
inverse x^2-3x
|
inverse\:x^{2}-3x
|
domain f(x)=(8x+3)/(7x+9)
|
domain\:f(x)=\frac{8x+3}{7x+9}
|
inverse f(x)=((x-10)^3)/(10)+5
|
inverse\:f(x)=\frac{(x-10)^{3}}{10}+5
|
extreme points-cos(t)
|
extreme\:points\:-\cos(t)
|
domain f(x)= 1/(e^x-1)
|
domain\:f(x)=\frac{1}{e^{x}-1}
|
critical points g(t)=tsqrt(4-t)
|
critical\:points\:g(t)=t\sqrt{4-t}
|
domain f(x)=((x+1/x+11))/(x+1/x+2)
|
domain\:f(x)=\frac{(x+\frac{1}{x}+11)}{x+\frac{1}{x}+2}
|
domain f(x)= 1/4 x-1/2
|
domain\:f(x)=\frac{1}{4}x-\frac{1}{2}
|
domain (2e^x+3)/(e^x-4)
|
domain\:\frac{2e^{x}+3}{e^{x}-4}
|
shift-(cos(pi(11x)/6))/(2)-2
|
shift\:-\frac{\cos(\pi\frac{11x}{6})}{2}-2
|
domain f(x)= 1/(sqrt(9-t))
|
domain\:f(x)=\frac{1}{\sqrt{9-t}}
|
asymptotes f(x)=(41x^7+3x^2)/(15x^6-2x)
|
asymptotes\:f(x)=\frac{41x^{7}+3x^{2}}{15x^{6}-2x}
|
range ((x+2)^2)/(x-1)
|
range\:\frac{(x+2)^{2}}{x-1}
|
range csc((pi)/3 x+pi)
|
range\:\csc(\frac{\pi}{3}x+\pi)
|
domain (5-x)/(x^2-4x)
|
domain\:\frac{5-x}{x^{2}-4x}
|
inverse y=log_{3}(x)
|
inverse\:y=\log_{3}(x)
|
x^4
|
x^{4}
|
extreme points f(x)=-x^3+3x^2+24x+3
|
extreme\:points\:f(x)=-x^{3}+3x^{2}+24x+3
|
domain f(x)=(-5x^2)/((x-4)(x+3))
|
domain\:f(x)=\frac{-5x^{2}}{(x-4)(x+3)}
|
inverse (2x-3)/4
|
inverse\:\frac{2x-3}{4}
|
range x^5
|
range\:x^{5}
|
line y=-x+2
|
line\:y=-x+2
|
slope intercept x+3y=-9
|
slope\:intercept\:x+3y=-9
|
perpendicular x-6y-7
|
perpendicular\:x-6y-7
|
periodicity y=-cot(x)
|
periodicity\:y=-\cot(x)
|
inflection points f(x)=((x^2))/((6x^2+5))
|
inflection\:points\:f(x)=\frac{(x^{2})}{(6x^{2}+5)}
|
domain f(x)=(3a)/(2a+25)
|
domain\:f(x)=\frac{3a}{2a+25}
|
asymptotes f(x)=(x^2-64)/(2x^2+10)
|
asymptotes\:f(x)=\frac{x^{2}-64}{2x^{2}+10}
|
domain f(x)=(sqrt(x-8)-7)/(sqrt(x-8)-8)
|
domain\:f(x)=\frac{\sqrt{x-8}-7}{\sqrt{x-8}-8}
|
domain f(x)=(6x+36)/x
|
domain\:f(x)=\frac{6x+36}{x}
|
domain f(x)= x/(1+x)
|
domain\:f(x)=\frac{x}{1+x}
|
amplitude f(x)=cos(2x)
|
amplitude\:f(x)=\cos(2x)
|
line y=-7x+2
|
line\:y=-7x+2
|
domain f(x)=8x-x^2
|
domain\:f(x)=8x-x^{2}
|
domain f(x)=sqrt((x^2-4)/(x-x^3))
|
domain\:f(x)=\sqrt{\frac{x^{2}-4}{x-x^{3}}}
|
domain f(x)= 1/x+1/(x-3)+1/(x+2)
|
domain\:f(x)=\frac{1}{x}+\frac{1}{x-3}+\frac{1}{x+2}
|
domain 2/x
|
domain\:\frac{2}{x}
|
extreme points f(x)=(14x)/(x^2+49)
|
extreme\:points\:f(x)=\frac{14x}{x^{2}+49}
|
critical points (x^2-2x-1)/(x+1)
|
critical\:points\:\frac{x^{2}-2x-1}{x+1}
|
midpoint (-1,3)(8,-5)
|
midpoint\:(-1,3)(8,-5)
|
symmetry-8x^2+4x-2
|
symmetry\:-8x^{2}+4x-2
|
extreme points (x^2-9x+39)/(x-7)
|
extreme\:points\:\frac{x^{2}-9x+39}{x-7}
|
domain f(x)= 1/(sqrt(x+6))
|
domain\:f(x)=\frac{1}{\sqrt{x+6}}
|
intercepts f(x)=2x^2-4x-5
|
intercepts\:f(x)=2x^{2}-4x-5
|
inverse f(x)=log_{2}(x+5)-9
|
inverse\:f(x)=\log_{2}(x+5)-9
|
inverse f(x)=2(x-3)^2
|
inverse\:f(x)=2(x-3)^{2}
|
inverse f(x)=-(2x)/(x-1)
|
inverse\:f(x)=-\frac{2x}{x-1}
|