asymptotes f(x)=(x^3)/(81-x^2)
|
asymptotes\:f(x)=\frac{x^{3}}{81-x^{2}}
|
intercepts (9-3x)/(x-4)
|
intercepts\:\frac{9-3x}{x-4}
|
symmetry x^2+9y^2=9
|
symmetry\:x^{2}+9y^{2}=9
|
intercepts-(x-5)^2-1
|
intercepts\:-(x-5)^{2}-1
|
domain (5y-8)/(11)
|
domain\:\frac{5y-8}{11}
|
extreme points f(x)=x^3-2x
|
extreme\:points\:f(x)=x^{3}-2x
|
range f(x)=-3sqrt(x)
|
range\:f(x)=-3\sqrt{x}
|
line (3,)(4,)
|
line\:(3,)(4,)
|
domain f(x)= 1/(x-9)
|
domain\:f(x)=\frac{1}{x-9}
|
parity f=(5xtan(x))/(x^2+1)
|
parity\:f=\frac{5x\tan(x)}{x^{2}+1}
|
asymptotes f(x)=(5-2x)/(6x+3)
|
asymptotes\:f(x)=\frac{5-2x}{6x+3}
|
inflection points f(x)=(x^2+1)/(x^2-1)
|
inflection\:points\:f(x)=\frac{x^{2}+1}{x^{2}-1}
|
slope 1/7
|
slope\:\frac{1}{7}
|
critical points 18x-3/2 x^2
|
critical\:points\:18x-\frac{3}{2}x^{2}
|
slope 4x+3y=-6
|
slope\:4x+3y=-6
|
inflection points f(x)=(x^2-1)^3
|
inflection\:points\:f(x)=(x^{2}-1)^{3}
|
critical points f(x)=x^4+8x^3+18x^2-8
|
critical\:points\:f(x)=x^{4}+8x^{3}+18x^{2}-8
|
critical points f(x)= 2/(x^3)
|
critical\:points\:f(x)=\frac{2}{x^{3}}
|
intercepts h(x)=x^3-5x^2+4x-20
|
intercepts\:h(x)=x^{3}-5x^{2}+4x-20
|
domain f(x)=(x+6)/(x(x+11))
|
domain\:f(x)=\frac{x+6}{x(x+11)}
|
asymptotes f(x)=(x-8)/(x+5)
|
asymptotes\:f(x)=\frac{x-8}{x+5}
|
range tan((pi)/9 x)
|
range\:\tan(\frac{\pi}{9}x)
|
domain 1+x^2
|
domain\:1+x^{2}
|
range sqrt(x+4)-1
|
range\:\sqrt{x+4}-1
|
asymptotes f(x)= x/(x^2+2x)
|
asymptotes\:f(x)=\frac{x}{x^{2}+2x}
|
distance (5,4),(4,7)
|
distance\:(5,4),(4,7)
|
domain f(x)=(x^2-2x+7)/(sqrt(4-x))
|
domain\:f(x)=\frac{x^{2}-2x+7}{\sqrt{4-x}}
|
range f(x)=(11)/x
|
range\:f(x)=\frac{11}{x}
|
domain f(x)=sin(7x)
|
domain\:f(x)=\sin(7x)
|
inflection points f(x)=-2/(x+3)
|
inflection\:points\:f(x)=-\frac{2}{x+3}
|
domain |x|
|
domain\:|x|
|
domain f(x)=((5x+7))/(9x)
|
domain\:f(x)=\frac{(5x+7)}{9x}
|
intercepts (x^2-16)/(x-4)
|
intercepts\:\frac{x^{2}-16}{x-4}
|
line (2,-3),(4,5)
|
line\:(2,-3),(4,5)
|
monotone intervals f(x)=(x-7)e^{-6x}
|
monotone\:intervals\:f(x)=(x-7)e^{-6x}
|
inverse f(x)=5x-11
|
inverse\:f(x)=5x-11
|
asymptotes f(x)=(x+2)/(2x-9)
|
asymptotes\:f(x)=\frac{x+2}{2x-9}
|
range ((x^2+5))/(2x^2-x-1)
|
range\:\frac{(x^{2}+5)}{2x^{2}-x-1}
|
symmetry x^2+2x-1
|
symmetry\:x^{2}+2x-1
|
extreme points f(x)=12+4x-x^2,[0,5]
|
extreme\:points\:f(x)=12+4x-x^{2},[0,5]
|
domain f(x)=6
|
domain\:f(x)=6
|
slope intercept 6x-10y=-3
|
slope\:intercept\:6x-10y=-3
|
inverse f(x)=7-2x
|
inverse\:f(x)=7-2x
|
domain f(x)=(x-3)
|
domain\:f(x)=(x-3)
|
cos(x)sin(x)
|
\cos(x)\sin(x)
|
domain 1/(x^2+5x-24)
|
domain\:\frac{1}{x^{2}+5x-24}
|
slope intercept y= 2/3 x+5
|
slope\:intercept\:y=\frac{2}{3}x+5
|
domain f(x)=(sqrt(5-x))/(sqrt(x^2-1))
|
domain\:f(x)=\frac{\sqrt{5-x}}{\sqrt{x^{2}-1}}
|
slope intercept y=-2x-4
|
slope\:intercept\:y=-2x-4
|
range f(x)=x^6
|
range\:f(x)=x^{6}
|
asymptotes f(x)=(4x+3)/(2x-6)
|
asymptotes\:f(x)=\frac{4x+3}{2x-6}
|
distance (-4,6)(0,-10)
|
distance\:(-4,6)(0,-10)
|
inverse f(x)=3(x-41)
|
inverse\:f(x)=3(x-41)
|
slope intercept 2-(3y+2x)/3 =3
|
slope\:intercept\:2-\frac{3y+2x}{3}=3
|
slope intercept 1/4 x+y=-2/7
|
slope\:intercept\:\frac{1}{4}x+y=-\frac{2}{7}
|
extreme points f(x)=x^3-6x^2+9x
|
extreme\:points\:f(x)=x^{3}-6x^{2}+9x
|
inverse f(x)=-sqrt(2x+6)-4
|
inverse\:f(x)=-\sqrt{2x+6}-4
|
domain f(x)=(5(x^2-x-90))/(6(x^2-100))
|
domain\:f(x)=\frac{5(x^{2}-x-90)}{6(x^{2}-100)}
|
asymptotes y=(2x+3)/(x-1)
|
asymptotes\:y=\frac{2x+3}{x-1}
|
symmetry y=3x^2+18
|
symmetry\:y=3x^{2}+18
|
slope y=1.4x+17.2
|
slope\:y=1.4x+17.2
|
domain-5/(2tsqrt(t))
|
domain\:-\frac{5}{2t\sqrt{t}}
|
slope y=-3x-53
|
slope\:y=-3x-53
|
inverse (6000)/(5+1995e^{-0.75x)}
|
inverse\:\frac{6000}{5+1995e^{-0.75x}}
|
asymptotes f(x)=(x^2+6x+5)/(x^2-9)
|
asymptotes\:f(x)=\frac{x^{2}+6x+5}{x^{2}-9}
|
symmetry f(-2)=-3
|
symmetry\:f(-2)=-3
|
domain 1/(x^{3/2)+3x}
|
domain\:\frac{1}{x^{\frac{3}{2}}+3x}
|
asymptotes f(x)=((x-2)(x+3))/((2x-3)(x-2))
|
asymptotes\:f(x)=\frac{(x-2)(x+3)}{(2x-3)(x-2)}
|
range log_{3}(x+2)
|
range\:\log_{3}(x+2)
|
intercepts f(x)=y=3x
|
intercepts\:f(x)=y=3x
|
line (-7,-7)(-3,6)
|
line\:(-7,-7)(-3,6)
|
inverse f(x)=4\sqrt[3]{x}+1
|
inverse\:f(x)=4\sqrt[3]{x}+1
|
range-(7)^x
|
range\:-(7)^{x}
|
asymptotes f(x)=(2)\div (x^2-16)
|
asymptotes\:f(x)=(2)\div\:(x^{2}-16)
|
domain f(x)=(15x^2-16x-15)/(3x^2-8x+5)
|
domain\:f(x)=\frac{15x^{2}-16x-15}{3x^{2}-8x+5}
|
domain f(x)= 4/(x+2)
|
domain\:f(x)=\frac{4}{x+2}
|
parity f(x)=x^4-3x^2-4
|
parity\:f(x)=x^{4}-3x^{2}-4
|
amplitude tan(x)-4
|
amplitude\:\tan(x)-4
|
inverse f(x)=x^2-81
|
inverse\:f(x)=x^{2}-81
|
domain cos(5x)
|
domain\:\cos(5x)
|
range-2x^2+8x+24
|
range\:-2x^{2}+8x+24
|
range 2/(2-x)
|
range\:\frac{2}{2-x}
|
inflection points f(x)=5x^4-30x^2
|
inflection\:points\:f(x)=5x^{4}-30x^{2}
|
inflection points (x^2-4)/(x^2-1)
|
inflection\:points\:\frac{x^{2}-4}{x^{2}-1}
|
asymptotes f(x)=-(x-1)/(x+3)
|
asymptotes\:f(x)=-\frac{x-1}{x+3}
|
midpoint (7,7)(13,13)
|
midpoint\:(7,7)(13,13)
|
distance (-6,3)(8,-3)
|
distance\:(-6,3)(8,-3)
|
asymptotes f(x)=(x^2-36)/(x(x-6))
|
asymptotes\:f(x)=\frac{x^{2}-36}{x(x-6)}
|
range sin(t)-(cos(t)+sin(t))
|
range\:\sin(t)-(\cos(t)+\sin(t))
|
extreme points f(x)=x^3-9x^2+3
|
extreme\:points\:f(x)=x^{3}-9x^{2}+3
|
domain f(x)=log_{b}(x)
|
domain\:f(x)=\log_{b}(x)
|
critical points y=(x^3)/3+(x^2)/2-2x+7
|
critical\:points\:y=\frac{x^{3}}{3}+\frac{x^{2}}{2}-2x+7
|
inverse y=9x^2-4
|
inverse\:y=9x^{2}-4
|
symmetry y=3x^2+6x-12
|
symmetry\:y=3x^{2}+6x-12
|
domain f(x)=x^4+16x^2+72
|
domain\:f(x)=x^{4}+16x^{2}+72
|
intercepts y=3x+2
|
intercepts\:y=3x+2
|
asymptotes (3x)/(x^2-x)
|
asymptotes\:\frac{3x}{x^{2}-x}
|
domain f(x)=(x-2)/(x+5)
|
domain\:f(x)=\frac{x-2}{x+5}
|
inverse f(x)= 3/4 x+12
|
inverse\:f(x)=\frac{3}{4}x+12
|
domain f(x)= 1/(1-sqrt(1-x))
|
domain\:f(x)=\frac{1}{1-\sqrt{1-x}}
|