derivative f(x)=ln(sin(x))
|
derivative\:f(x)=\ln(\sin(x))
|
slope 6x+10y=8
|
slope\:6x+10y=8
|
derivative f(x)=-12x^2+9x,\at x=6
|
derivative\:f(x)=-12x^{2}+9x,\at\:x=6
|
derivative x^2e^{-x}
|
derivative\:x^{2}e^{-x}
|
1/(log_{3)(m)}
|
\frac{1}{\log_{3}(m)}
|
derivative f(x)=5x
|
derivative\:f(x)=5x
|
derivative f(x)= 1/(2x)
|
derivative\:f(x)=\frac{1}{2x}
|
cartesian(1,0)
|
cartesian(1,0)
|
derivative xe^{-x^2}
|
derivative\:xe^{-x^{2}}
|
derivative f(x)=x^7
|
derivative\:f(x)=x^{7}
|
derivative f(x)=sqrt(8-x^3)
|
derivative\:f(x)=\sqrt{8-x^{3}}
|
slope x+y=3
|
slope\:x+y=3
|
tangent f(x)=7x^2+2x-7,\at x=-3
|
tangent\:f(x)=7x^{2}+2x-7,\at\:x=-3
|
midpoint(1,3)(3,5)
|
midpoint(1,3)(3,5)
|
slope-3x+5y=2x+3y
|
slope\:-3x+5y=2x+3y
|
cartesian(4,-(2pi)/3)
|
cartesian(4,-\frac{2π}{3})
|
cartesian(-sqrt(2),(5pi)/4)
|
cartesian(-\sqrt{2},\frac{5π}{4})
|
slope 0.5x-5y=9
|
slope\:0.5x-5y=9
|
derivative y=4\sqrt[3]{x^5}
|
derivative\:y=4\sqrt[3]{x^{5}}
|
derivative 4x
|
derivative\:4x
|
tangent f(x)=4x^2+3,\at x=1
|
tangent\:f(x)=4x^{2}+3,\at\:x=1
|
slope 2/3
|
slope\:\frac{2}{3}
|
slope y=-3
|
slope\:y=-3
|
tangent y=x^3-5x,(-1,4)
|
tangent\:y=x^{3}-5x,(-1,4)
|
slope y=5x+2
|
slope\:y=5x+2
|
derivative f(x)=e^{x^2}
|
derivative\:f(x)=e^{x^{2}}
|
derivative f(x)=4x^2
|
derivative\:f(x)=4x^{2}
|
slope 3x+5y=15
|
slope\:3x+5y=15
|
f=2
|
f=2
|
polar xy=8
|
polar\:xy=8
|
midpoint(-4,4)(-2,2)
|
midpoint(-4,4)(-2,2)
|
integral x/2
|
integral\:\frac{x}{2}
|
polar(-8,8)
|
polar(-8,8)
|
derivative f(x)=7x^4-8x^5+1
|
derivative\:f(x)=7x^{4}-8x^{5}+1
|
cartesian(6,(2pi)/3)
|
cartesian(6,\frac{2π}{3})
|
perpendicular 2x-3y=5,\at x= 7/2
|
perpendicular\:2x-3y=5,\at\:x=\frac{7}{2}
|
slope 4x+3y=12
|
slope\:4x+3y=12
|
derivative y=ln(sqrt((x+1)/(x-1)))
|
derivative\:y=\ln(\sqrt{\frac{x+1}{x-1}})
|
line(-2,6),(3,-2)
|
line(-2,6),(3,-2)
|
tangent f(x)=x^2,\at x=1
|
tangent\:f(x)=x^{2},\at\:x=1
|
polar y=sqrt(3)x
|
polar\:y=\sqrt{3}x
|
derivative f(x)=ln(sinh(x))
|
derivative\:f(x)=\ln(\sinh(x))
|
integral sin(x)
|
integral\:\sin(x)
|
derivative y=(arcsin(x^3))^4
|
derivative\:y=(\arcsin(x^{3}))^{4}
|
perpendicular y=3x-2
|
perpendicular\:y=3x-2
|
derivative f(x)=ln(3x)
|
derivative\:f(x)=\ln(3x)
|
midpoint(1,1)(4,-16)
|
midpoint(1,1)(4,-16)
|
derivative f(x)=e^{-x}
|
derivative\:f(x)=e^{-x}
|
tangent sqrt(x)
|
tangent\:\sqrt{x}
|
derivative 2x^2
|
derivative\:2x^{2}
|
derivative y=3x+2
|
derivative\:y=3x+2
|
parallel y=2x+3
|
parallel\:y=2x+3
|
midpoint(-4,5)(0,8)
|
midpoint(-4,5)(0,8)
|
derivative f(x)=sin^3(x)
|
derivative\:f(x)=\sin^{3}(x)
|
derivative f(x)=(3x^2+6x+4)/(sqrt(x))
|
derivative\:f(x)=\frac{3x^{2}+6x+4}{\sqrt{x}}
|
cartesian(-4,(7pi)/6)
|
cartesian(-4,\frac{7π}{6})
|
derivative e^{x^2}*2x
|
derivative\:e^{x^{2}}\cdot\:2x
|
slope 8x+4y=16
|
slope\:8x+4y=16
|
derivative y=(x^2+x+1)/x
|
derivative\:y=\frac{x^{2}+x+1}{x}
|
derivative y=x^4
|
derivative\:y=x^{4}
|
derivative y=sin(2x)
|
derivative\:y=\sin(2x)
|
slopeintercept 4x+2y=6
|
slopeintercept\:4x+2y=6
|
integral cos(2x)
|
integral\:\cos(2x)
|
midpoint(-1,5)(5,5)
|
midpoint(-1,5)(5,5)
|
derivative f(x)= 1/4 x^8-1/2 x^6-x+2
|
derivative\:f(x)=\frac{1}{4}x^{8}-\frac{1}{2}x^{6}-x+2
|
derivative y= 4/x
|
derivative\:y=\frac{4}{x}
|
slope x=6
|
slope\:x=6
|
cartesian(4,pi)
|
cartesian(4,π)
|
derivative f(x)=4e^xcos(x)
|
derivative\:f(x)=4e^{x}\cos(x)
|
derivative f(x)=x^2-4x
|
derivative\:f(x)=x^{2}-4x
|
cartesian(-3,(5pi)/6)
|
cartesian(-3,\frac{5π}{6})
|
x=7
|
x=7
|
cartesian(9,(5pi)/6)
|
cartesian(9,\frac{5π}{6})
|
derivative y=x^{3/2}
|
derivative\:y=x^{\frac{3}{2}}
|
f(0)=3
|
f(0)=3
|
derivative f(x)=cos(x)
|
derivative\:f(x)=\cos(x)
|
polar x^2+y^2=4
|
polar\:x^{2}+y^{2}=4
|
f(-2)=0
|
f(-2)=0
|
derivative 4x^2
|
derivative\:4x^{2}
|
slope 3x-5y=4
|
slope\:3x-5y=4
|
distance(5,-9),(-4,-1)
|
distance(5,-9),(-4,-1)
|
perpendicular y= 1/3 x+2,\at(3,3)
|
perpendicular\:y=\frac{1}{3}x+2,\at(3,3)
|
line(8,4)(20,10)
|
line(8,4)(20,10)
|
tangent f(x)=(1+x)^{4/x},\at x=1
|
tangent\:f(x)=(1+x)^{\frac{4}{x}},\at\:x=1
|
cartesian(6,-(7pi)/6)
|
cartesian(6,-\frac{7π}{6})
|
derivative f(x)=e^xln(x)
|
derivative\:f(x)=e^{x}\ln(x)
|
slope 4-y=2x
|
slope\:4-y=2x
|
polar(-1,0)
|
polar(-1,0)
|
derivative f(x)=3
|
derivative\:f(x)=3
|
tangent y=ln(x)
|
tangent\:y=\ln(x)
|
derivative f(x)= x/(e^x)
|
derivative\:f(x)=\frac{x}{e^{x}}
|
derivative f(x)=sqrt(4-x^2)
|
derivative\:f(x)=\sqrt{4-x^{2}}
|
derivative f(x)=2x
|
derivative\:f(x)=2x
|
slope y=4
|
slope\:y=4
|
derivative f(x)=(x^3+2x)e^x
|
derivative\:f(x)=(x^{3}+2x)e^{x}
|
derivative y=sin^2(x)
|
derivative\:y=\sin^{2}(x)
|
distance(-3,2)(0,3)
|
distance(-3,2)(0,3)
|
slope y=5x+3
|
slope\:y=5x+3
|
slope y=-4x-1
|
slope\:y=-4x-1
|
derivative y=cos^{-1}(1/x)
|
derivative\:y=\cos^{-1}(\frac{1}{x})
|