Solutions
Solutions to Try Its
1.

a. [latex]\left(0,5\right)[/latex]
b. [latex]\left(5,\text{ 0}\right)[/latex]
c. Slope -1
d. Neither parallel nor perpendicular
e. Decreasing function
f. Given the identity function, perform a vertical flip (over the t-axis) and shift up 5 units.
Solutions to Odd-Numbered Exercises
1. The slopes are equal; y-intercepts are not equal. 3. The point of intersection is [latex]\left(a,a\right)[/latex]. This is because for the horizontal line, all of the y coordinates are a and for the vertical line, all of the x coordinates are a. The point of intersection will have these two characteristics. 5. First, find the slope of the linear function. Then take the negative reciprocal of the slope; this is the slope of the perpendicular line. Substitute the slope of the perpendicular line and the coordinate of the given point into the equation [latex]y=mx+b[/latex] and solve for b. Then write the equation of the line in the form [latex]y=mx+b[/latex] by substituting in m and b. 7. neither parallel or perpendicular 9. perpendicular 11. parallel 13. [latex]\left(-2\text{, }0\right)[/latex] ; [latex]\left(0\text{, 4}\right)[/latex] 15. [latex]\left(\frac{1}{5}\text{, }0\right)[/latex] ; [latex]\left(0\text{, 1}\right)[/latex] 17. [latex]\left(8\text{, }0\right)[/latex] ; [latex]\left(0\text{, }28\right)[/latex] 19. [latex]\text{Line 1}: m=8 \text{ Line 2}: m=-6 \text{Neither}[/latex] 21. [latex]\text{Line 1}: m=-\frac{1}{2} \text{ Line 2}: m=2 \text{Perpendicular}[/latex] 23. [latex]\text{Line 1}: m=-2 \text{ Line 2}: m=-2 \text{Parallel}[/latex] 25. [latex]g\left(x\right)=3x - 3[/latex] 27. [latex]p\left(t\right)=-\frac{1}{3}t+2[/latex] 29. [latex]\left(-2,1\right)[/latex] 31. [latex]\left(-\frac{17}{5},\frac{5}{3}\right)[/latex] 33. F 35. C 37. A 39.








