Table of Integrals
Basic Integrals
1. ∫undu=n+1un+1+C,n=−1
2. ∫udu=ln∣u∣+C
3. ∫eudu=eu+C
4. ∫audu=lnaau+C
5. ∫sinudu=−cosu+C
6. ∫cosudu=sinu+C
7. ∫sec2udu=tanu+C
8. ∫csc2udu=−cotu+C
9. ∫secutanudu=secu+C
10. ∫cscucotudu=−cscu+C
11. ∫tanudu=ln∣secu∣+C
12. ∫cotudu=ln∣sinu∣+C
13. ∫secudu=ln∣secu+tanu∣+C
14. ∫cscudu=ln∣cscu−cotu∣+C
15. ∫a2−u2du=sin−1au+C
16. ∫a2+u2du=a1tan−1au+C
17. ∫uu2−a2du=a1sec−1au+C
Trigonometric Integrals
18. ∫sin2udu=21u−41sin2u+C
19. ∫cos2udu=21u+41sin2u+C
20. ∫tan2udu=tanu−u+C
21. ∫cot2udu=−cotu−u+C
22. ∫sin3udu=−31(2+sin2u)cosu+C
23. ∫cos3udu=31(2+cos2u)sinu+C
24. ∫tan3udu=21tan2u+ln∣cosu∣+C
25. ∫cot3udu=−21cot2u−ln∣sinu∣+C
26. ∫sec3udu=21secutanu+21ln∣secu+tanu∣+C
27. ∫csc3udu=−21cscucotu+21ln∣cscu−cotu∣+C
28. ∫sinnudu=−n1sinn−1ucosu+nn−1∫sinn−2udu
29. ∫cosnudu=n1cosn−1usinu+nn−1∫cosn−2udu
30. ∫tannudu=n−11tann−1u−∫tann−2udu
31. ∫cotnudu=n−1−1cotn−1u−∫cotn−2udu
32. ∫secnudu=n−11tanusecn−2u+n−1n−2∫secn−2udu
33. ∫cscnudu=n−1−1cotucscn−2u+n−1n−2∫cscn−2udu
34. ∫sinausinbudu=2(a−b)sin(a−b)u−2(a+b)sin(a+b)u+C
35. ∫cosaucosbudu=2(a−b)sin(a−b)u+2(a+b)sin(a+b)u+C
36. ∫sinaucosbudu=−2(a−b)cos(a−b)u−2(a+b)cos(a+b)u+C
37. ∫usinudu=sinu−ucosu+C
38. ∫ucosudu=cosu+usinu+C
39. ∫unsinudu=−uncosu+n∫un−1cosudu
40. ∫uncosudu=unsinu−n∫un−1sinudu
41. ∫sinnucosmudu=−n+msinn−1ucosm+1u+n+mn−1∫sinn−2ucosmudu=n+msinn+1ucosm−1u+n+mm−1∫sinnucosm−2udu
Exponential and Logarithmic Integrals
42. ∫ueaudu=a21(au−1)eau+C
43. ∫uneaudu=a1uneau−an∫un−1eaudu
44. ∫eausinbudu=a2+b2eau(asinbu−bcosbu)+C
45. ∫eaucosbudu=a2+b2eau(acosbu+bsinbu)+C
46. ∫lnudu=ulnu−u+C
47. ∫unlnudu=(n+1)2un+1[(n+1)lnu−1]+C
48. ∫ulnu1du=ln∣lnu∣+C
Hyperbolic Integrals
49. ∫sinhudu=coshu+C
50. ∫coshudu=sinhu+C
51. ∫tanhudu=lncoshu+C
52. ∫cothudu=ln∣sinhu∣+C
53. ∫sechudu=tan−1∣sinhu∣+C
54. ∫cschudu=ln∣tanh21u∣+C
55. ∫sech2udu=tanhu+C
56. ∫csch2udu=−cothu+C
57. ∫sechutanhudu=−sechu+C
58. ∫cschucothudu=−cschu+C
Inverse Trigonometric Integrals
59. ∫sin−1udu=usin−1u+1−u2+C
60. ∫cos−1udu=ucos−1u−1−u2+C
61. ∫tan−1udu=utan−1u−21ln(1+u2)+C
62. ∫usin−1udu=42u2−1sin−1u+4u1−u2+C
63. ∫ucos−1udu=42u2−1cos−1u−4u1−u2+C
64. ∫utan−1udu=2u2+1tan−1u−2u+C
65. ∫unsin−1udu=n+11[un+1sin−1u−∫1−u2un+1du],n=−1
66. ∫uncos−1udu=n+11[un+1cos−1u+∫1−u2un+1du],n=−1
67. ∫untan−1udu=n+11[un+1tan−1u−∫1+u2un+1du],n=−1
Integrals Involving a2 + u2, a > 0
68. ∫a2+u2du=2ua2+u2+2a2ln(u+a2+u2)+C
69. ∫u2a2+u2du=8u(a2+2u2)a2+u2−8a4ln(u+a2+u2)+C
70. ∫ua2+u2du=a2+u2−aln∣ua+a2+u2∣+C
71. ∫u2a2+u2du=−ua2+u2+ln(u+a2+u2)+C
72. ∫a2+u2du=ln(u+a2+u2)+C
73. ∫a2+u2u2du=2u(a2+u2)−2a2ln(u+a2+u2)+C
74. ∫ua2+u2du=−a1ln∣ua2+u2+a∣+C
75. ∫u2a2+u2du=−a2ua2+u2+C
76. ∫(a2+u2)3/2du=a2a2+u2u+C
Integrals Involving u2 − a2, a > 0
77. ∫u2−a2du=2uu2−a2−2a2ln∣u+u2−a2∣+C
78. ∫u2u2−a2du=8u(2u2−a2)u2−a2−8a4ln∣u+u2−a2∣+C
79. ∫uu2−a2du=u2−a2−acos−1∣u∣a+C
80. ∫u2u2−a2du=−uu2−a2+ln∣u+u2−a2∣+C
81. ∫u2−a2du=ln∣u+u2−a2∣+C
82. ∫u2−a2u2du=2uu2−a2+2a2ln∣u+u2−a2∣+C
83. ∫u2u2−a2du=a2uu2−a2+C
84. ∫(u2−a2)3/2du=−a2u2−a2u+C
Integrals Involving a2 − u2, a > 0
85. ∫a2−u2du=2ua2−u2+2a2sin−1au+C
86. ∫u2a2−u2du=8u(2u2−a2)a2−u2+8a4sin−1au+C
87. ∫ua2−u2du=a2−u2−aln∣ua+a2−u2∣+C
88. ∫u2a2−u2du=−u1a2−u2−sin−1au+C
89. ∫a2−u2u2du=−uua2−u2+2a2sin−1au+C
90. ∫ua2−u2du=−a1ln∣ua+a2−u2∣+C
91. ∫u2a2−u2du=−a2u1a2−u2+C
92. ∫(a2−u2)3/2du=−8u(2u2−5a2)a2−u2+83a4sin−1au+C
93. ∫(a2−u2)3/2du=−a2a2−u2u+C
Integrals Involving 2au − u2, a > 0
94. ∫2au−u2du=2u−a2au−u2+2a2cos−1(aa−u)+C
95. ∫2au−u2du=cos−1(aa−u)+C
96. ∫u2au−u2du=62u2−au−3a22au−u2+2a3cos−1(aa−u)+C
97. ∫u2au−u2du=−au2au−u2+C
Integrals Involving a + bu, a ≠ 0
98. ∫a+buudu=b21(a+bu−aln∣a+bu∣)+C
99. ∫a+buu2du=2b31[(a+bu)2−4a(a+bu)+2a2ln∣a+bu∣]+C
100. ∫u(a+bu)du=a1ln∣a+buu∣+C
101. ∫u2(a+bu)du=−au1+a2bln∣ua+bu∣+C
102. ∫(a+bu)2udu=b2(a+bu)a+b21ln∣a+bu∣+C
103. ∫u(a+bu)2udu=a(a+bu)1−a21ln∣ua+bu∣+C
104. ∫(a+bu)2u2du=b31(a+bu−a+bua2−2aln∣a+bu∣)+C
105. ∫ua+budu=15b22(3bu−2a)(a+bu)3/2+C
106. ∫a+buudu=3b22(bu−2a)a+bu+C
107. ∫a+buu2du=15b32(8a2+3b2u2−4abu)a+bu+C
108. ∫ua+budu=a1ln∣a+bu+aa+bu−a∣+C,=−a2tan−1−aa+bu+C, if a>0 if a<0
109. ∫ua+budu=2a+bu+a∫ua+budu
110. ∫u2a+budu=−ua+bu+2b∫ua+budu
111. ∫una+budu=b(2n+3)2[un(a+bu)3/2−na∫un−1a+budu]
112. ∫a+buundu=b(2n+1)2una+bu−b(2n+1)2na∫a+buun−1du
113. ∫una+budu=−a(n−1)un−1a+bu−2a(n−1)b(2n−3)∫un−1a+budu
Licenses & Attributions
CC licensed content, Shared previously
- Calculus I. Provided by: OpenStax Located at: https://openstax.org/books/calculus-volume-1/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License terms: Download for free at http://cnx.org/contents/8b89d172-2927-466f-8661-01abc7ccdba4@2.89.