We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > MATH 1314: College Algebra

Identify the domain of a logarithmic function

Before working with graphs, we will take a look at the domain (the set of input values) for which the logarithmic function is defined.

Recall that the exponential function is defined as y=bxy={b}^{x}\\ for any real number x and constant b>0b>0\\, b1b\ne 1\\, where

  • The domain of y is (,)\left(-\infty ,\infty \right)\\.
  • The range of y is (0,)\left(0,\infty \right)\\.

In the last section we learned that the logarithmic function y=logb(x)y={\mathrm{log}}_{b}\left(x\right)\\ is the inverse of the exponential function y=bxy={b}^{x}\\. So, as inverse functions:

  • The domain of y=logb(x)y={\mathrm{log}}_{b}\left(x\right)\\ is the range of y=bxy={b}^{x}\\:(0,)\left(0,\infty \right)\\.
  • The range of y=logb(x)y={\mathrm{log}}_{b}\left(x\right)\\ is the domain of y=bxy={b}^{x}\\: (,)\left(-\infty ,\infty \right)\\.

Transformations of the parent function y=logb(x)y={\mathrm{log}}_{b}\left(x\right)\\ behave similarly to those of other functions. Just as with other parent functions, we can apply the four types of transformations—shifts, stretches, compressions, and reflections—to the parent function without loss of shape.

In Graphs of Exponential Functions we saw that certain transformations can change the range of y=bxy={b}^{x}\\. Similarly, applying transformations to the parent function y=logb(x)y={\mathrm{log}}_{b}\left(x\right)\\ can change the domain. When finding the domain of a logarithmic function, therefore, it is important to remember that the domain consists only of positive real numbers. That is, the argument of the logarithmic function must be greater than zero.

For example, consider f(x)=log4(2x3)f\left(x\right)={\mathrm{log}}_{4}\left(2x - 3\right)\\. This function is defined for any values of x such that the argument, in this case 2x32x - 3\\, is greater than zero. To find the domain, we set up an inequality and solve for x:

{2x3>0Show the argument greater than zero.2x>3Add 3.x>1.5Divide by 2.\begin{cases}2x - 3>0\hfill & \text{Show the argument greater than zero}.\hfill \\ 2x>3\hfill & \text{Add 3}.\hfill \\ x>1.5\hfill & \text{Divide by 2}.\hfill \end{cases}\\

In interval notation, the domain of f(x)=log4(2x3)f\left(x\right)={\mathrm{log}}_{4}\left(2x - 3\right)\\ is (1.5,)\left(1.5,\infty \right)\\.

How To: Given a logarithmic function, identify the domain.

  1. Set up an inequality showing the argument greater than zero.
  2. Solve for x.
  3. Write the domain in interval notation.

Example 1: Identifying the Domain of a Logarithmic Shift

What is the domain of f(x)=log2(x+3)f\left(x\right)={\mathrm{log}}_{2}\left(x+3\right)\\?

Solution

The logarithmic function is defined only when the input is positive, so this function is defined when x+3>0x+3>0\\. Solving this inequality,

{x+3>0The input must be positive.x>3Subtract 3.\begin{cases}x+3>0\hfill & \text{The input must be positive}.\hfill \\ x>-3\hfill & \text{Subtract 3}.\hfill \end{cases}\\

The domain of f(x)=log2(x+3)f\left(x\right)={\mathrm{log}}_{2}\left(x+3\right)\\ is (3,)\left(-3,\infty \right)\\.

Try It 1

What is the domain of f(x)=log5(x2)+1f\left(x\right)={\mathrm{log}}_{5}\left(x - 2\right)+1\\?

Solution

Example 2: Identifying the Domain of a Logarithmic Shift and Reflection

What is the domain of f(x)=log(52x)f\left(x\right)=\mathrm{log}\left(5 - 2x\right)\\?

Solution

The logarithmic function is defined only when the input is positive, so this function is defined when 52x>05 - 2x>0\\. Solving this inequality,

{52x>0The input must be positive.2x>5Subtract 5.x<52Divide by 2 and switch the inequality.\begin{cases}5 - 2x>0\hfill & \text{The input must be positive}.\hfill \\ -2x>-5\hfill & \text{Subtract }5.\hfill \\ x<\frac{5}{2}\hfill & \text{Divide by }-2\text{ and switch the inequality}.\hfill \end{cases}\\

The domain of f(x)=log(52x)f\left(x\right)=\mathrm{log}\left(5 - 2x\right)\\ is (,52)\left(-\infty ,\frac{5}{2}\right)\\.

Try It 2

What is the domain of f(x)=log(x5)+2f\left(x\right)=\mathrm{log}\left(x - 5\right)+2\\?

Solution

Licenses & Attributions