perpendicular y= 5/2 x,\at (2,5)
|
perpendicular\:y=\frac{5}{2}x,\at\:(2,5)
|
domain f(x)=xsqrt(x)
|
domain\:f(x)=x\sqrt{x}
|
inverse f(x)=(3x-5)/(7x+2)
|
inverse\:f(x)=\frac{3x-5}{7x+2}
|
inflection points f(x)=x^4-8x^2+1
|
inflection\:points\:f(x)=x^{4}-8x^{2}+1
|
inverse f(x)=-4x^2+3
|
inverse\:f(x)=-4x^{2}+3
|
inverse (2x-1)/3+1
|
inverse\:\frac{2x-1}{3}+1
|
monotone intervals x^{1/x}
|
monotone\:intervals\:x^{\frac{1}{x}}
|
range f(x)=(1/2)^{2x}+5
|
range\:f(x)=(\frac{1}{2})^{2x}+5
|
slope y=-3x+8
|
slope\:y=-3x+8
|
inverse f(x)=\sqrt[3]{(x+3)/2}
|
inverse\:f(x)=\sqrt[3]{\frac{x+3}{2}}
|
domain f(x)=(x^2-4)/(x-3)
|
domain\:f(x)=\frac{x^{2}-4}{x-3}
|
extreme points f(x)=(x-4)^{2/3}
|
extreme\:points\:f(x)=(x-4)^{\frac{2}{3}}
|
asymptotes f(x)=(x^2-4x+4)/(x^3-5x^2)
|
asymptotes\:f(x)=\frac{x^{2}-4x+4}{x^{3}-5x^{2}}
|
symmetry x^5
|
symmetry\:x^{5}
|
domain f(x)=sqrt(2x)
|
domain\:f(x)=\sqrt{2x}
|
shift f(x)=2cos(pi x-4)+2
|
shift\:f(x)=2\cos(\pi\:x-4)+2
|
intercepts 1/2 x^4-x^3-36x^2+108x+80
|
intercepts\:\frac{1}{2}x^{4}-x^{3}-36x^{2}+108x+80
|
distance (1,-1)(8,7)
|
distance\:(1,-1)(8,7)
|
inverse y=e^{x/2}
|
inverse\:y=e^{\frac{x}{2}}
|
domain f(x)=sqrt((x^2-5x+6)/(x-3))
|
domain\:f(x)=\sqrt{\frac{x^{2}-5x+6}{x-3}}
|
parity f(x)=csc(x^2)
|
parity\:f(x)=\csc(x^{2})
|
asymptotes f(x)=(2x+8)/(x^2+6x+8)
|
asymptotes\:f(x)=\frac{2x+8}{x^{2}+6x+8}
|
range f(x)=-4/x
|
range\:f(x)=-\frac{4}{x}
|
inverse f(x)=(10)/(x+1)
|
inverse\:f(x)=\frac{10}{x+1}
|
extreme points f(x)=x^{2/3}(x-4)
|
extreme\:points\:f(x)=x^{\frac{2}{3}}(x-4)
|
intercepts (x+10)/(x-11)
|
intercepts\:\frac{x+10}{x-11}
|
inflection points f(x)=-x^3+9x^2-53
|
inflection\:points\:f(x)=-x^{3}+9x^{2}-53
|
midpoint (6,-3),(10,-9)
|
midpoint\:(6,-3),(10,-9)
|
domain G(t)=-(13)/((4+t)^2)
|
domain\:G(t)=-\frac{13}{(4+t)^{2}}
|
distance (-5,-1)(4,2)
|
distance\:(-5,-1)(4,2)
|
slope intercept 4x-5y=-10
|
slope\:intercept\:4x-5y=-10
|
intercepts f(x)=4^x
|
intercepts\:f(x)=4^{x}
|
domain (x^2)/(x+3)
|
domain\:\frac{x^{2}}{x+3}
|
asymptotes f(x)=(-4)/(x+2)
|
asymptotes\:f(x)=\frac{-4}{x+2}
|
inverse f(x)= 3/4 n-3/2
|
inverse\:f(x)=\frac{3}{4}n-\frac{3}{2}
|
midpoint (7,1)(5,1)
|
midpoint\:(7,1)(5,1)
|
domain f(x)=sqrt((6+x)/(2+3x))
|
domain\:f(x)=\sqrt{\frac{6+x}{2+3x}}
|
domain f(x)=sqrt(x^2-2x+5)
|
domain\:f(x)=\sqrt{x^{2}-2x+5}
|
inverse f(x)=2(x-2)^2-2
|
inverse\:f(x)=2(x-2)^{2}-2
|
asymptotes f(x)=(x+9)/(x^2+8x+5)
|
asymptotes\:f(x)=\frac{x+9}{x^{2}+8x+5}
|
inverse y=\sqrt[3]{x+2}
|
inverse\:y=\sqrt[3]{x+2}
|
range f(x)=2-2x
|
range\:f(x)=2-2x
|
inverse f(x)=9-5x
|
inverse\:f(x)=9-5x
|
inverse f(x)=1000x^3
|
inverse\:f(x)=1000x^{3}
|
domain f(x)=(11)/((x^2+36))
|
domain\:f(x)=\frac{11}{(x^{2}+36)}
|
domain f(x)=(sqrt(3+x))/(6-x)
|
domain\:f(x)=\frac{\sqrt{3+x}}{6-x}
|
domain f(x)=(1/2)*6^x
|
domain\:f(x)=(\frac{1}{2})\cdot\:6^{x}
|
domain f(x)=(3x+5)/(2x^2-4x-6)
|
domain\:f(x)=\frac{3x+5}{2x^{2}-4x-6}
|
range sqrt(x+4)-2
|
range\:\sqrt{x+4}-2
|
inverse f(x)=sqrt(x)+1
|
inverse\:f(x)=\sqrt{x}+1
|
symmetry (x+7)^3-2
|
symmetry\:(x+7)^{3}-2
|
domain f(x)=(sqrt(x+3))/(x^2-x-12)
|
domain\:f(x)=\frac{\sqrt{x+3}}{x^{2}-x-12}
|
asymptotes f(x)=x+2
|
asymptotes\:f(x)=x+2
|
domain (11)/x
|
domain\:\frac{11}{x}
|
asymptotes (x^2-4x-12)/(x^2-8x+12)
|
asymptotes\:\frac{x^{2}-4x-12}{x^{2}-8x+12}
|
asymptotes f(x)=2log_{3}(-x+8)-1
|
asymptotes\:f(x)=2\log_{3}(-x+8)-1
|
asymptotes (4x-6)/(-x+2)
|
asymptotes\:\frac{4x-6}{-x+2}
|
asymptotes f(x)=(5x-50)/(x^2-100)
|
asymptotes\:f(x)=\frac{5x-50}{x^{2}-100}
|
extreme points f(x)=x^4-2x^2+1
|
extreme\:points\:f(x)=x^{4}-2x^{2}+1
|
asymptotes f(x)=(-x^2+4x+2)/(x-3)
|
asymptotes\:f(x)=\frac{-x^{2}+4x+2}{x-3}
|
y=3x+7
|
y=3x+7
|
inverse y=-25x^2+15x+120
|
inverse\:y=-25x^{2}+15x+120
|
midpoint (4,-4)(6,4)
|
midpoint\:(4,-4)(6,4)
|
domain \sqrt[3]{6x-7}
|
domain\:\sqrt[3]{6x-7}
|
inverse x^2+x
|
inverse\:x^{2}+x
|
intercepts y=-1
|
intercepts\:y=-1
|
range 1-sqrt(x)
|
range\:1-\sqrt{x}
|
slope intercept y-3=2(x+2)
|
slope\:intercept\:y-3=2(x+2)
|
asymptotes f(x)= 3/((x-1)^3)
|
asymptotes\:f(x)=\frac{3}{(x-1)^{3}}
|
y=csc(x)
|
y=\csc(x)
|
inverse f(x)= 3/(x-2)+2
|
inverse\:f(x)=\frac{3}{x-2}+2
|
intercepts f(x)=x^2(x+3)^2
|
intercepts\:f(x)=x^{2}(x+3)^{2}
|
symmetry-x^2+10x-21
|
symmetry\:-x^{2}+10x-21
|
range f(x)=9x+5,x< 0
|
range\:f(x)=9x+5,x\lt\:0
|
domain f(x)=(3x^2-8x)/(2x^2-5x-3)
|
domain\:f(x)=\frac{3x^{2}-8x}{2x^{2}-5x-3}
|
parity 9sec(x)-2x
|
parity\:9\sec(x)-2x
|
domain h(x)=sqrt(x-7)
|
domain\:h(x)=\sqrt{x-7}
|
inverse 2x^2+2
|
inverse\:2x^{2}+2
|
slope intercept-5y+7x=11
|
slope\:intercept\:-5y+7x=11
|
extreme points f(x)=(16x^2-16)^{1/3}
|
extreme\:points\:f(x)=(16x^{2}-16)^{\frac{1}{3}}
|
asymptotes f(x)=(x+7)/(x^2-49)
|
asymptotes\:f(x)=\frac{x+7}{x^{2}-49}
|
domain f(x)=(x+2)/(24-sqrt(x^2-49))
|
domain\:f(x)=\frac{x+2}{24-\sqrt{x^{2}-49}}
|
asymptotes x+(12)/x
|
asymptotes\:x+\frac{12}{x}
|
critical points f(x)=(-1/2 sin(3x-(pi)/2)-1)
|
critical\:points\:f(x)=(-\frac{1}{2}\sin(3x-\frac{\pi}{2})-1)
|
domain y=x^2+1
|
domain\:y=x^{2}+1
|
symmetry 1/x
|
symmetry\:\frac{1}{x}
|
inflection points f(x)=2-x^3
|
inflection\:points\:f(x)=2-x^{3}
|
asymptotes f(x)=(x^3+2x^2+x)/(x^2+3x+2)
|
asymptotes\:f(x)=\frac{x^{3}+2x^{2}+x}{x^{2}+3x+2}
|
domain f(x)=x^3+2x-1
|
domain\:f(x)=x^{3}+2x-1
|
domain x^2-4
|
domain\:x^{2}-4
|
extreme points f(x)=x^2+9x+2
|
extreme\:points\:f(x)=x^{2}+9x+2
|
slope intercept x+y=-3
|
slope\:intercept\:x+y=-3
|
inflection points (2x^2-12x+16)/(x^2-x-12)
|
inflection\:points\:\frac{2x^{2}-12x+16}{x^{2}-x-12}
|
inverse f(x)=\sqrt[3]{x/9}-4
|
inverse\:f(x)=\sqrt[3]{\frac{x}{9}}-4
|
domain sqrt(-x+8)
|
domain\:\sqrt{-x+8}
|
monotone intervals f(x)=x^2-4x-12
|
monotone\:intervals\:f(x)=x^{2}-4x-12
|
asymptotes f(x)=(4x)/(sqrt(x^2+1))
|
asymptotes\:f(x)=\frac{4x}{\sqrt{x^{2}+1}}
|
domain-1/(2sqrt(-x+9))
|
domain\:-\frac{1}{2\sqrt{-x+9}}
|
symmetry x^2+4x+7
|
symmetry\:x^{2}+4x+7
|
domain \sqrt[4]{56x^3}
|
domain\:\sqrt[4]{56x^{3}}
|